

Welcome to the AegeanTools documentation!

Contents:

	AegeanTools modules

	AegeanTools scripts

	AeReg

	AeRes

	BANE

	MIMAS

	SR6

	Simple usage

	Output formats

	Priorized fitting

AegeanTools modules

angle_tools

Tools for manipulating angles on the surface of a sphere
- distance
- bearing between two points
- translation along a path
- paths are either great circles or rhumb lines

also angle <-> string conversion tools for Aegean

	
AegeanTools.angle_tools.bear(ra1, dec1, ra2, dec2)

	Calculate the bearing of point 2 from point 1 along a great circle.
The bearing is East of North and is in [0, 360), whereas position angle is also East of North but (-180,180]

	Parameters

	
	ra1, dec1, ra2, dec2float
	The sky coordinates (degrees) of the two points.

	Returns

	
	bearfloat
	The bearing of point 2 from point 1 (degrees).

	
AegeanTools.angle_tools.bear_rhumb(ra1, dec1, ra2, dec2)

	Calculate the bearing of point 2 from point 1 along a Rhumb line.
The bearing is East of North and is in [0, 360), whereas position angle is also East of North but (-180,180]

	Parameters

	
	ra1, dec1, ra2, dec2float
	The sky coordinates (degrees) of the two points.

	Returns

	
	distfloat
	The bearing of point 2 from point 1 along a Rhumb line (degrees).

	
AegeanTools.angle_tools.dec2dec(dec)

	Convert sexegessimal RA string into a float in degrees.

	Parameters

	
	decstr
	A string separated representing the Dec.
Expected format is [+-]hh:mm[:ss.s]
Colons can be replaced with any whit space character.

	Returns

	
	decfloat
	The Dec in degrees.

	
AegeanTools.angle_tools.dec2dms(x)

	Convert decimal degrees into a sexagessimal string in degrees.

	Parameters

	
	xfloat
	Angle in degrees

	Returns

	
	dmsstr
	String of format [+-]DD:MM:SS.SS
or XX:XX:XX.XX if x is not finite.

	
AegeanTools.angle_tools.dec2hms(x)

	Convert decimal degrees into a sexagessimal string in hours.

	Parameters

	
	xfloat
	Angle in degrees

	Returns

	
	dmsstring
	String of format HH:MM:SS.SS
or XX:XX:XX.XX if x is not finite.

	
AegeanTools.angle_tools.dist_rhumb(ra1, dec1, ra2, dec2)

	Calculate the Rhumb line distance between two points [1].
A Rhumb line between two points is one which follows a constant bearing.

	Parameters

	
	ra1, dec1, ra2, dec2float
	The position of the two points (degrees).

	Returns

	
	distfloat
	The distance between the two points along a line of constant bearing.

Notes

	1

	Rhumb line [https://en.wikipedia.org/wiki/Rhumb_line]

	
AegeanTools.angle_tools.gcd(ra1, dec1, ra2, dec2)

	Calculate the great circle distance between to points using the haversine formula [1].

	Parameters

	
	ra1, dec1, ra2, dec2float
	The coordinates of the two points of interest.
Units are in degrees.

	Returns

	
	distfloat
	The distance between the two points in degrees.

Notes

This duplicates the functionality of astropy but is faster as there is no creation of SkyCoords objects.

	1

	Haversine formula [https://en.wikipedia.org/wiki/Haversine_formula]

	
AegeanTools.angle_tools.ra2dec(ra)

	Convert sexegessimal RA string into a float in degrees.

	Parameters

	
	rastr
	A string separated representing the RA.
Expected format is hh:mm[:ss.s]
Colons can be replaced with any whit space character.

	Returns

	
	rafloat
	The RA in degrees.

	
AegeanTools.angle_tools.translate(ra, dec, r, theta)

	Translate a given point a distance r in the (initial) direction theta, along a great circle.

	Parameters

	
	ra, decfloat
	The initial point of interest (degrees).

	r, thetafloat
	The distance and initial direction to translate (degrees).

	Returns

	
	ra, dec(float, float)
	The translated position (degrees).

	
AegeanTools.angle_tools.translate_rhumb(ra, dec, r, theta)

	Translate a given point a distance r in the (initial) direction theta, along a Rhumb line.

	Parameters

	
	ra, decfloat
	The initial point of interest (degrees).

	r, thetafloat
	The distance and initial direction to translate (degrees).

	Returns

	
	ra, decfloat
	The translated position (degrees).

BANE

This module contains all of the BANE specific code
The function filter_image should be imported from elsewhere and run as is.

	
AegeanTools.BANE.barrier(events, sid, kind='neighbour')

	act as a multiprocessing barrier

	
AegeanTools.BANE.filter_image(im_name, out_base, step_size=None, box_size=None, twopass=False, cores=None, mask=True, compressed=False, nslice=None)

	Create a background and noise image from an input image.
Resulting images are written to outbase_bkg.fits and outbase_rms.fits

	Parameters

	
	im_namestr
	Image to filter.

	out_basestr or None
	The output filename base. Will be modified to make _bkg and _rms files.
If None, then no files are written.

	step_size(int,int)
	Tuple of the x,y step size in pixels

	box_size(int,int)
	The size of the box in pixels

	twopassbool
	Perform a second pass calculation to ensure that the noise is not contaminated by the background.
Default = False

	coresint
	Number of CPU corse to use.
Default = all available

	nsliceint
	The image will be divided into this many horizontal stripes for processing.
Default = None = equal to cores

	maskbool
	Mask the output array to contain np.nna wherever the input array is nan or not finite.
Default = true

	compressedbool
	Return a compressed version of the background/noise images.
Default = False

	Returns

	
	bkg, rmsnumpy.ndarray
	The computed background and rms maps (not compressed)

	
AegeanTools.BANE.filter_mc_sharemem(filename, step_size, box_size, cores, shape, nslice=None, domask=True)

	Calculate the background and noise images corresponding to the input file.
The calculation is done via a box-car approach and uses multiple cores and shared memory.

	Parameters

	
	filenamestr
	Filename to be filtered.

	step_size(int, int)
	Step size for the filter.

	box_size(int, int)
	Box size for the filter.

	coresint
	Number of cores to use. If None then use all available.

	nsliceint
	The image will be divided into this many horizontal stripes for processing.
Default = None = equal to cores

	shape(int, int)
	The shape of the image in the given file.

	domaskbool
	True(Default) = copy data mask to output.

	Returns

	
	bkg, rmsnumpy.ndarray
	The interpolated background and noise images.

	
AegeanTools.BANE.get_step_size(header)

	Determine the grid spacing for BANE operation.

This is set to being 4x the synthesized beam width.
If the beam is not circular then the “width” is sqrt(a*b)

For the standard 4 pix/beam, the step size will be 16 pixels.

	Parameters

	
	header
	

	Returns

	
	step_size(int, int)
	The grid spacing for BANE operation

	
AegeanTools.BANE.sigma_filter(filename, region, step_size, box_size, shape, domask, sid)

	Calculate the background and rms for a sub region of an image. The results are
written to shared memory - irms and ibkg.

	Parameters

	
	filenamestring
	Fits file to open

	regionlist
	Region within the fits file that is to be processed. (row_min, row_max).

	step_size(int, int)
	The filtering step size

	box_size(int, int)
	The size of the box over which the filter is applied (each step).

	shapetuple
	The shape of the fits image

	domaskbool
	If true then copy the data mask to the output.

	sidint
	The stripe number

	Returns

	
	None
	

	
AegeanTools.BANE.sigmaclip(arr, lo, hi, reps=3)

	Perform sigma clipping on an array, ignoring non finite values.

During each iteration return an array whose elements c obey:
mean -std*lo < c < mean + std*hi

where mean/std are the mean std of the input array.

	Parameters

	
	arriterable
	An iterable array of numeric types.

	lofloat
	The negative clipping level.

	hifloat
	The positive clipping level.

	repsint
	The number of iterations to perform.
Default = 3.

	Returns

	
	meanfloat
	The mean of the array, possibly nan

	stdfloat
	The std of the array, possibly nan

Notes

Scipy v0.16 now contains a comparable method that will ignore nan/inf values.

	
AegeanTools.BANE.write_fits(data, header, file_name)

	Combine data and a fits header to write a fits file.

	Parameters

	
	datanumpy.ndarray
	The data to be written.

	headerastropy.io.fits.hduheader
	The header for the fits file.

	file_namestring
	The file to write

	Returns

	
	None
	

catalogs

Module for reading at writing catalogs

	
AegeanTools.catalogs.check_table_formats(files)

	Determine whether a list of files are of a recognizable output type.

	Parameters

	
	filesstr
	A list of file names

	Returns

	
	resultbool
	True if all the file names are supported

	
AegeanTools.catalogs.get_table_formats()

	Create a list of file extensions that are supported for writing.

	Returns

	
	fmtslist
	A list of file name extensions that are supported.

	
AegeanTools.catalogs.load_catalog(filename)

	Load a catalogue and extract the source positions (only)

	Parameters

	
	filenamestr
	Filename to read. Supported types are csv, tab, tex, vo, vot, and xml.

	Returns

	
	cataloguelist
	A list of [(ra, dec), …]

	
AegeanTools.catalogs.load_table(filename)

	Load a table from a given file.

Supports csv, tab, tex, vo, vot, xml, fits, and hdf5.

	Parameters

	
	filenamestr
	File to read

	Returns

	
	tableTable
	Table of data.

	
AegeanTools.catalogs.nulls(x)

	Convert values of -1 into None.

	Parameters

	
	xfloat or int
	Value to convert

	Returns

	
	val[x, None]
	

	
AegeanTools.catalogs.save_catalog(filename, catalog, meta=None, prefix=None)

	Save a catalogue of sources using filename as a model. Meta data can be written to some file types
(fits, votable).

Each type of source will be in a separate file:

	base_comp.ext AegeanTools.models.ComponentSource

	base_isle.ext AegeanTools.models.IslandSource

	base_simp.ext AegeanTools.models.SimpleSource

Where filename = base.ext

	Parameters

	
	filenamestr
	Name of file to write, format is determined by extension.

	cataloglist
	A list of sources to write. Sources must be of type AegeanTools.models.ComponentSource,
AegeanTools.models.SimpleSource, or AegeanTools.models.IslandSource.

	prefixstr
	Prepend each column name with “prefix_”. Default is to prepend nothing.

	metadict
	Meta data to be written to the output file. Support for metadata depends on file type.

	Returns

	
	None
	

	
AegeanTools.catalogs.show_formats()

	Print a list of all the file formats that are supported for writing.
The file formats are determined by their extensions.

	Returns

	
	None
	

	
AegeanTools.catalogs.table_to_source_list(table, src_type=<class 'AegeanTools.models.ComponentSource'>)

	Convert a table of data into a list of sources.

A single table must have consistent source types given by src_type. src_type should be one of
AegeanTools.models.ComponentSource, AegeanTools.models.SimpleSource,
or AegeanTools.models.IslandSource.

	Parameters

	
	tableTable
	Table of sources

	src_typeclass
	Sources must be of type AegeanTools.models.ComponentSource,
AegeanTools.models.SimpleSource, or AegeanTools.models.IslandSource.

	Returns

	
	sourceslist
	A list of objects of the given type.

	
AegeanTools.catalogs.update_meta_data(meta=None)

	Modify the metadata dictionary.
DATE, PROGRAM, and PROGVER are added/modified.

	Parameters

	
	metadict
	The dictionary to be modified, default = None (empty)

	Returns

	
	An updated dictionary.
	

	
AegeanTools.catalogs.writeAnn(filename, catalog, fmt)

	Write an annotation file that can be read by Kvis (.ann) or DS9 (.reg).
Uses ra/dec from catalog.
Draws ellipses if bmaj/bmin/pa are in catalog. Draws 30” circles otherwise.

Only AegeanTools.models.ComponentSource will appear in the annotation file
unless there are none, in which case AegeanTools.models.SimpleSource (if present)
will be written. If any AegeanTools.models.IslandSource objects are present then
an island contours file will be written.

	Parameters

	
	filenamestr
	Output filename base.

	cataloglist
	List of sources.

	fmt[‘ann’, ‘reg’]
	Output file type.

	Returns

	
	None
	

See also

	AegeanTools.catalogs.writeIslandContours
	

	
AegeanTools.catalogs.writeDB(filename, catalog, meta=None)

	Output an sqlite3 database containing one table for each source type

	Parameters

	
	filenamestr
	Output filename

	cataloglist
	List of sources of type AegeanTools.models.ComponentSource,
AegeanTools.models.SimpleSource, or AegeanTools.models.IslandSource.

	metadict
	Meta data to be written to table meta

	Returns

	
	None
	

	
AegeanTools.catalogs.writeFITSTable(filename, table)

	Convert a table into a FITSTable and then write to disk.

	Parameters

	
	filenamestr
	Filename to write.

	tableTable
	Table to write.

	Returns

	
	None
	

Notes

Due to a bug in numpy, int32 and float32 are converted to int64 and float64 before writing.

	
AegeanTools.catalogs.writeIslandBoxes(filename, catalog, fmt)

	Write an output file in ds9 .reg, or kvis .ann format that contains bounding boxes for all the islands.

	Parameters

	
	filenamestr
	Filename to write.

	cataloglist
	List of sources. Only those of type AegeanTools.models.IslandSource will have contours drawn.

	fmtstr
	Output format type. Currently only ‘reg’ and ‘ann’ are supported. Default = ‘reg’.

	Returns

	
	None
	

See also

	AegeanTools.catalogs.writeIslandContours()
	

	
AegeanTools.catalogs.writeIslandContours(filename, catalog, fmt='reg')

	Write an output file in ds9 .reg format that outlines the boundaries of each island.

	Parameters

	
	filenamestr
	Filename to write.

	cataloglist
	List of sources. Only those of type AegeanTools.models.IslandSource will have contours drawn.

	fmtstr
	Output format type. Currently only ‘reg’ is supported (default)

	Returns

	
	None
	

See also

	AegeanTools.catalogs.writeIslandBoxes()
	

	
AegeanTools.catalogs.write_catalog(filename, catalog, fmt=None, meta=None, prefix=None)

	Write a catalog (list of sources) to a file with format determined by extension.

Sources must be of type AegeanTools.models.ComponentSource,
AegeanTools.models.SimpleSource, or AegeanTools.models.IslandSource.

	Parameters

	
	filenamestr
	Base name for file to write. _simp, _comp, or _isle will be added to differentiate
the different types of sources that are being written.

	cataloglist
	A list of source objects. Sources must be of type AegeanTools.models.ComponentSource,
AegeanTools.models.SimpleSource, or AegeanTools.models.IslandSource.

	fmtstr
	The file format extension.

	prefixstr
	Prepend each column name with “prefix_”. Default is to prepend nothing.

	metadict
	A dictionary to be used as metadata for some file types (fits, VOTable).

	Returns

	
	None
	

	
AegeanTools.catalogs.write_table(table, filename)

	Write a table to a file.

	Parameters

	
	tableTable
	Table to be written

	filenamestr
	Destination for saving table.

	Returns

	
	None
	

cluster

Cluster and crossmatch tools and analysis functions.

Includes:
- DBSCAN clustering

	
AegeanTools.cluster.check_attributes_for_regroup(catalog)

	Check that the catalog has all the attributes reqired for the regrouping task.

	Parameters

	
	cataloglist
	List of python objects, ideally derived from AegeanTools.models.SimpleSource

	Returns

	
	resultbool
	True if the first entry in the catalog has the required attributes

	
AegeanTools.cluster.norm_dist(src1, src2)

	Calculate the normalised distance between two sources.
Sources are elliptical Gaussians.

The normalised distance is calculated as the GCD distance between the
centers, divided by quadrature sum of the radius of each ellipse along
a line joining the two ellipses.

For ellipses that touch at a single point, the normalized distance
will be 1/sqrt(2).

	Parameters

	
	src1, src2object
	The two positions to compare. Objects must have the following
parameters: (ra, dec, a, b, pa).

	Returns

	
	dist: float
	The normalised distance.

	
AegeanTools.cluster.pairwise_ellpitical_binary(sources, eps, far=None)

	Do a pairwise comparison of all sources and determine if they have a normalized distance within
eps.

Form this into a matrix of shape NxN.

	Parameters

	
	sourceslist
	A list of sources (objects with parameters: ra,dec,a,b,pa)

	epsfloat
	Normalised distance constraint.

	farfloat
	If sources have a dec that differs by more than this amount then they are considered to be not matched.
This is a short-cut around performing GCD calculations.

	Returns

	
	probnumpy.ndarray
	A 2d array of True/False.

See also

	AegeanTools.cluster.norm_dist()
	

	
AegeanTools.cluster.regroup(catalog, eps, far=None, dist=<function norm_dist>)

	Regroup the islands of a catalog according to their normalised distance.
Return a list of island groups. Sources have their (island,source) parameters relabeled.

	Parameters

	
	catalogstr or object
	Either a filename to read into a source list, or a list of objects with the following properties[units]:
ra[deg], dec[deg], a[arcsec], b[arcsec],pa[deg], peak_flux[any]

	epsfloat
	maximum normalised distance within which sources are considered to be grouped

	farfloat
	(degrees) sources that are further than this distance appart will not be grouped, and will not be tested.
Default = None.

	distfunc
	a function that calculates the distance between two sources must accept two SimpleSource objects.
Default = AegeanTools.cluster.norm_dist()

	Returns

	
	islandslist
	A list of islands. Each island is a list of sources.

See also

	AegeanTools.cluster.norm_dist()
	

	
AegeanTools.cluster.regroup_dbscan(srccat, eps=4)

	Regroup the islands of a catalog according using DBSCAN.

Return a list of island groups.

	Parameters

	
	srccat[object]
	A list of objects with parameters ra,dec (both in decimal degrees)

	epsfloat
	maximum normalized distance within which sources are considered to be
grouped

	Returns

	
	islandslist of lists
	Each island contains integer indices for members from srccat
(in descending dec order).

	
AegeanTools.cluster.regroup_vectorized(srccat, eps, far=None, dist=<function norm_dist>)

	Regroup the islands of a catalog according to their normalised distance.

Assumes srccat is recarray-like for efficiency.
Return a list of island groups.

	Parameters

	
	srccatnp.rec.arry or pd.DataFrame
	Should have the following fields[units]:
ra[deg],dec[deg], a[arcsec],b[arcsec],pa[deg], peak_flux[any]

	epsfloat
	maximum normalised distance within which sources are considered to be
grouped

	farfloat
	(degrees) sources that are further than this distance apart will not
be grouped, and will not be tested.
Default = 0.5.

	distfunc
	a function that calculates the distance between a source and each
element of an array of sources.
Default = AegeanTools.cluster.norm_dist()

	Returns

	
	islandslist of lists
	Each island contians integer indices for members from srccat
(in descending dec order).

	
AegeanTools.cluster.resize(catalog, ratio=None, psfhelper=None)

	Resize all the sources in a given catalogue.
Either use a ratio to blindly scale all sources by the same amount,
or use a psf map to deconvolve the sources and then convolve them with the new psf

Sources that cannot be rescaled are not returned

	Parameters

	
	cataloglist
	List of objects

	ratiofloat, default=None
	Ratio for scaling the sources

	psfhelperAegeanTools.wcs_helpers.WCSHelper, default=None
	A wcs helper object that contains psf information for the target image/projection

	Returns

	
	cataloglist
	Modified list of objects

	
AegeanTools.cluster.sky_dist(src1, src2)

	Great circle distance between two sources.
A check is made to determine if the two sources are the same object, in this case
the distance is zero.

	Parameters

	
	src1, src2object
	Two sources to check. Objects must have parameters (ra,dec) in degrees.

	Returns

	
	distancefloat
	The distance between the two sources.

See also

	AegeanTools.angle_tools.gcd()
	

fits_image

Tools for interacting with fits images (HUDLists)

	
class AegeanTools.fits_image.FitsImage(filename=None, hdu_index=0, beam=None, cube_index=None)

	An object that handles the loading and manipulation of a fits file.

	
get_background_rms()

	Calculate the rms of the image. The rms is calculated from the interqurtile range (IQR), to
reduce bias from source pixels.

	Returns

	
	rmsfloat
	The image rms.

Notes

The rms value is cached after first calculation.

	
get_hdu_header()

	Get the image header.

	
get_pixels()

	Get the image data.

	Returns

	
	pixelsnumpy.ndarray
	2d Array of image pixels.

	
pix2sky(pixel)

	Get the sky coordinates for a given image pixel.

	Parameters

	
	pixel(float, float)
	Image coordinates.

	Returns

	
	ra,decfloat
	Sky coordinates (degrees)

	
set_pixels(pixels)

	Set the image data.
Will not work if the new image has a different shape than the current image.

	Parameters

	
	pixelsnumpy.ndarray
	New image data

	Returns

	
	None
	

	
sky2pix(skypos)

	Get the pixel coordinates for a given sky position (degrees).

	Parameters

	
	skypos(float,float)
	ra,dec position in degrees.

	Returns

	
	x,yfloat
	Pixel coordinates.

fits_interp

A module to allow fits files to be shrunk in size using decimation, and to be
grown in size using interpolation.

	
AegeanTools.fits_interp.compress(datafile, factor, outfile=None)

	Compress a file using decimation.

	Parameters

	
	datafilestr or HDUList
	Input data to be loaded. (HDUList will be modified if passed).

	factorint
	Decimation factor.

	outfilestr
	File to be written. Default = None, which means don’t write a file.

	Returns

	
	hdulistHDUList
	A decimated HDUList

See also

	AegeanTools.fits_interp.expand()
	

	
AegeanTools.fits_interp.expand(datafile, outfile=None)

	Expand and interpolate the given data file using the given method.
Datafile can be a filename or an HDUList

It is assumed that the file has been compressed and that there are BN_? keywords in the
fits header that describe how the compression was done.

	Parameters

	
	datafilestr or HDUList
	filename or HDUList of file to work on

	outfilestr
	filename to write to (default = None)

	Returns

	
	hdulistHDUList
	HDUList of the expanded data.

See also

	AegeanTools.fits_interp.compress()
	

	
AegeanTools.fits_interp.load_file_or_hdu(filename)

	Load a file from disk and return an HDUList
If filename is already an HDUList return that instead

	Parameters

	
	filenamestr or HDUList
	File or HDU to be loaded

	Returns

	
	hdulistHDUList
	

fitting

Provide fitting routines and helper fucntions to Aegean

	
AegeanTools.fitting.Bmatrix(C)

	Calculate a matrix which is effectively the square root of the correlation matrix C

	Parameters

	
	C2d array
	A covariance matrix

	Returns

	
	B2d array
	A matrix B such the B.dot(B’) = inv(C)

	
AegeanTools.fitting.Cmatrix(x, y, sx, sy, theta)

	Construct a correlation matrix corresponding to the data.
The matrix assumes a gaussian correlation function.

	Parameters

	
	x, yarray-like
	locations at which to evaluate the correlation matirx

	sx, syfloat
	major/minor axes of the gaussian correlation function (sigmas)

	thetafloat
	position angle of the gaussian correlation function (degrees)

	Returns

	
	dataarray-like
	The C-matrix.

	
AegeanTools.fitting.RB_bias(data, pars, ita=None, acf=None)

	Calculate the expected bias on each of the parameters in the model pars.
Only parameters that are allowed to vary will have a bias.
Calculation follows the description of Refrieger & Brown 1998 (cite).

	Parameters

	
	data2d-array
	data that was fit

	parslmfit.Parameters
	The model

	ita2d-array
	The ita matrix (optional).

	acf2d-array
	The acf for the data.

	Returns

	
	biasarray
	The bias on each of the parameters

	
AegeanTools.fitting.bias_correct(params, data, acf=None)

	Calculate and apply a bias correction to the given fit parameters

	Parameters

	
	paramslmfit.Parameters
	The model parameters. These will be modified.

	data2d-array
	The data which was used in the fitting

	acf2d-array
	ACF of the data. Default = None.

	Returns

	
	None
	

See also

	AegeanTools.fitting.RB_bias()
	

	
AegeanTools.fitting.condon_errors(source, theta_n, psf=None)

	Calculate the parameter errors for a fitted source
using the description of Condon’97
All parameters are assigned errors, assuming that all params were fit.
If some params were held fixed then these errors are overestimated.

	Parameters

	
	sourceAegeanTools.models.SimpleSource
	The source which was fit.

	theta_nfloat or None
	A measure of the beam sampling. (See Condon’97).

	psfAegeanTools.wcs_helpers.Beam
	The psf at the location of the source.

	Returns

	
	None
	

	
AegeanTools.fitting.covar_errors(params, data, errs, B, C=None)

	Take a set of parameters that were fit with lmfit, and replace the errors
with the 1sigma errors calculated using the covariance matrix.

	Parameters

	
	paramslmfit.Parameters
	Model

	data2d-array
	Image data

	errs2d-array ?
	Image noise.

	B2d-array
	B matrix.

	C2d-array
	C matrix. Optional. If supplied then Bmatrix will not be used.

	Returns

	
	paramslmfit.Parameters
	Modified model.

	
AegeanTools.fitting.do_lmfit(data, params, B=None, errs=None, dojac=True)

	Fit the model to the data
data may contain ‘flagged’ or ‘masked’ data with the value of np.NaN

	Parameters

	
	data2d-array
	Image data

	paramslmfit.Parameters
	Initial model guess.

	B2d-array
	B matrix to be used in residual calculations.
Default = None.

	errs1d-array
	

	dojacbool
	If true then an analytic jacobian will be passed to the fitting routine.

	Returns

	
	result?
	lmfit.minimize result.

	paramslmfit.Params
	Fitted model.

See also

	AegeanTools.fitting.lmfit_jacobian()
	

	
AegeanTools.fitting.elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta)

	Generate a model 2d Gaussian with the given parameters.
Evaluate this model at the given locations x,y.

	Parameters

	
	x, ynumeric or array-like
	locations at which to evaluate the gaussian

	ampfloat
	Peak value.

	xo, yofloat
	Center of the gaussian.

	sx, syfloat
	major/minor axes in sigmas

	thetafloat
	position angle (degrees) CCW from x-axis

	Returns

	
	datanumeric or array-like
	Gaussian function evaluated at the x,y locations.

	
AegeanTools.fitting.elliptical_gaussian_with_alpha(x, y, v, amp, xo, yo, vo, sx, sy, theta, alpha, beta=None)

	Generate a model 2d Gaussian with spectral terms.
Evaluate this model at the given locations x,y,dv.

amp is the amplitude at the reference frequency vo

The model is:
S(x,v) = amp (v/vo) ^ (alpha + beta x log(v/vo))

When beta is none it is ignored.

	Parameters

	
	x, y, vnumeric or array-like
	locations at which to evaluate the gaussian

	ampfloat
	Peak value.

	xo, yo, vo: float
	Center of the gaussian.

	sx, syfloat
	major/minor axes in sigmas

	thetafloat
	position angle (degrees) CCW from x-axis

	alpha, beta: float
	The spectral terms of the fit.

	Returns

	
	datanumeric or array-like
	Gaussian function evaluated at the x,y locations.

	
AegeanTools.fitting.emp_hessian(pars, x, y)

	Calculate the hessian matrix empirically.
Create a hessian matrix corresponding to the source model ‘pars’
Only parameters that vary will contribute to the hessian.
Thus there will be a total of nvar x nvar entries, each of which is a
len(x) x len(y) array.

	Parameters

	
	parslmfit.Parameters
	The model

	x, ylist
	locations at which to evaluate the Hessian

	Returns

	
	hnp.array
	Hessian. Shape will be (nvar, nvar, len(x), len(y))

See also

	AegeanTools.fitting.hessian()
	

Notes

Uses AegeanTools.fitting.emp_jacobian() to calculate the first order derivatives.

	
AegeanTools.fitting.emp_jacobian(pars, x, y)

	An empirical calculation of the Jacobian
Will work for a model that contains multiple Gaussians, and for which
some components are not being fit (don’t vary).

	Parameters

	
	parslmfit.Model
	The model parameters

	x, ylist
	Locations at which the jacobian is being evaluated

	Returns

	
	j2d array
	The Jacobian.

See also

	AegeanTools.fitting.jacobian()
	

	
AegeanTools.fitting.errors(source, model, wcshelper)

	Convert pixel based errors into sky coord errors

	Parameters

	
	sourceAegeanTools.models.SimpleSource
	The source which was fit.

	modellmfit.Parameters
	The model which was fit.

	wcshelperAegeanTools.wcs_helpers.WCSHelper
	WCS information.

	Returns

	
	sourceAegeanTools.models.SimpleSource
	The modified source obejct.

	
AegeanTools.fitting.hessian(pars, x, y)

	Create a hessian matrix corresponding to the source model ‘pars’
Only parameters that vary will contribute to the hessian.
Thus there will be a total of nvar x nvar entries, each of which is a
len(x) x len(y) array.

	Parameters

	
	parslmfit.Parameters
	The model

	x, ylist
	locations at which to evaluate the Hessian

	Returns

	
	hnp.array
	Hessian. Shape will be (nvar, nvar, len(x), len(y))

See also

	AegeanTools.fitting.emp_hessian()
	

	
AegeanTools.fitting.jacobian(pars, x, y)

	Analytical calculation of the Jacobian for an elliptical gaussian
Will work for a model that contains multiple Gaussians, and for which
some components are not being fit (don’t vary).

	Parameters

	
	parslmfit.Model
	The model parameters

	x, ylist
	Locations at which the jacobian is being evaluated

	Returns

	
	j2d array
	The Jacobian.

See also

	AegeanTools.fitting.emp_jacobian()
	

	
AegeanTools.fitting.lmfit_jacobian(pars, x, y, errs=None, B=None, emp=False)

	Wrapper around AegeanTools.fitting.jacobian() and AegeanTools.fitting.emp_jacobian()
which gives the output in a format that is required for lmfit.

	Parameters

	
	parslmfit.Model
	The model parameters

	x, ylist
	Locations at which the jacobian is being evaluated

	errslist
	a vector of 1sigma errors (optional). Default = None

	B2d-array
	a B-matrix (optional) see AegeanTools.fitting.Bmatrix()

	empbool
	If true the use the empirical Jacobian, otherwise use the analytical one.
Default = False.

	Returns

	
	j2d-array
	A Jacobian.

See also

	AegeanTools.fitting.Bmatrix()
	

	AegeanTools.fitting.jacobian()
	

	AegeanTools.fitting.emp_jacobian()
	

	
AegeanTools.fitting.make_ita(noise, acf=None)

	Create the matrix ita of the noise where the noise may be a masked array
where ita(x,y) is the correlation between pixel pairs that have the same separation as x and y.

	Parameters

	
	noise2d-array
	The noise image

	acf2d-array
	The autocorrelation matrix. (None = calculate from data).
Default = None.

	Returns

	
	ita2d-array
	The matrix ita

	
AegeanTools.fitting.nan_acf(noise)

	Calculate the autocorrelation function of the noise
where the noise is a 2d array that may contain nans

	Parameters

	
	noise2d-array
	Noise image.

	Returns

	
	acf2d-array
	The ACF.

	
AegeanTools.fitting.new_errors(source, model, wcshelper)

	Convert pixel based errors into sky coord errors
Uses covariance matrix for ra/dec errors
and calculus approach to a/b/pa errors

	Parameters

	
	sourceAegeanTools.models.SimpleSource
	The source which was fit.

	modellmfit.Parameters
	The model which was fit.

	wcshelperAegeanTools.wcs_helpers.WCSHelper
	WCS information.

	Returns

	
	sourceAegeanTools.models.SimpleSource
	The modified source obejct.

	
AegeanTools.fitting.ntwodgaussian_lmfit(params)

	Convert an lmfit.Parameters object into a function which calculates the model.

	Parameters

	
	paramslmfit.Parameters
	Model parameters, can have multiple components.

	Returns

	
	modelfunc
	A function f(x,y) that will compute the model.

flags

Flag constants for use by Aegean.

MIMAS

MIMAS - The Multi-resolution Image Mask for Aegean Software

TODO: Write an in/out reader for MOC formats described by
http://arxiv.org/abs/1505.02937

	
class AegeanTools.MIMAS.Dummy(maxdepth=8)

	A state storage class for MIMAS to work with.

	Attributes

	
	add_regionlist
	List of AegeanTools.MIMAS.Region to be added.

	rem_regionlist
	List of AegeanTools.MIMAS.Region to be subtracted.

	include_circles[[ra, dec, radius],…]
	List of circles to be added to the region, units are degrees.

	exclude_circles[[ra, dec, radius], …]
	List of circles to be subtracted from the region, units are degrees.

	include_polygons[[ra,dec, …], …]
	List of polygons to be added to the region, units are degrees.

	exclude_polygons[[ra,dec, …], …]
	List of polygons to be subtracted from the region, units are degrees.

	maxdepthint
	Depth or resolution of the region for HEALPix.
There are 4*2**maxdepth pixels at the deepest layer.
Default = 8.

	galactic: bool
	If true then all ra/dec coordinates will be interpreted as if they were in galactic
lat/lon (degrees)

	
AegeanTools.MIMAS.box2poly(line)

	Convert a string that describes a box in ds9 format, into a polygon that is given by the corners of the box

	Parameters

	
	linestr
	A string containing a DS9 region command for a box.

	Returns

	
	poly[ra, dec, …]
	The corners of the box in clockwise order from top left.

	
AegeanTools.MIMAS.circle2circle(line)

	Parse a string that describes a circle in ds9 format.

	Parameters

	
	linestr
	A string containing a DS9 region command for a circle.

	Returns

	
	circle[ra, dec, radius]
	The center and radius of the circle.

	
AegeanTools.MIMAS.combine_regions(container)

	Return a region that is the combination of those specified in the container.
The container is typically a results instance that comes from argparse.

Order of construction is: add regions, subtract regions, add circles, subtract circles,
add polygons, subtract polygons.

	Parameters

	
	containerAegeanTools.MIMAS.Dummy
	The regions to be combined.

	Returns

	
	regionAegeanTools.regions.Region
	The constructed region.

	
AegeanTools.MIMAS.galactic2fk5(l, b)

	Convert galactic l/b to fk5 ra/dec

	Parameters

	
	l, bfloat
	Galactic coordinates in radians.

	Returns

	
	ra, decfloat
	FK5 ecliptic coordinates in radians.

	
AegeanTools.MIMAS.intersect_regions(flist)

	Construct a region which is the intersection of all regions described in the given
list of file names.

	Parameters

	
	flistlist
	A list of region filenames.

	Returns

	
	regionAegeanTools.regions.Region
	The intersection of all regions, possibly empty.

	
AegeanTools.MIMAS.mask2mim(maskfile, mimfile, threshold=1.0, maxdepth=8)

	Use a fits file as a mask to create a region file.

Pixels in mask file that are equal or above the threshold will be included in the reigon,
while those that are below the threshold will not.

	Parameters

	
	maskfilestr
	Input file in fits format.

	mimfilestr
	Output filename

	thresholdfloat
	threshold value for separating include/exclude values

	maxdepthint
	Maximum depth (resolution) of the healpix pixels

	
AegeanTools.MIMAS.mask_catalog(regionfile, infile, outfile, negate=False, racol='ra', deccol='dec')

	Apply a region file as a mask to a catalog, removing all the rows with ra/dec inside the region
If negate=False then remove the rows with ra/dec outside the region.

	Parameters

	
	regionfilestr
	A file which can be loaded as a AegeanTools.regions.Region.
The catalogue will be masked according to this region.

	infilestr
	Input catalogue.

	outfilestr
	Output catalogue.

	negatebool
	If True then pixels outside the region are masked.
Default = False.

	racol, deccolstr
	The name of the columns in table that should be interpreted as ra and dec.
Default = ‘ra’, ‘dec’

See also

	AegeanTools.MIMAS.mask_table()
	

	AegeanTools.catalogs.load_table()
	

	
AegeanTools.MIMAS.mask_file(regionfile, infile, outfile, negate=False)

	Created a masked version of file, using a region.

	Parameters

	
	regionfilestr
	A file which can be loaded as a AegeanTools.regions.Region.
The image will be masked according to this region.

	infilestr
	Input FITS image.

	outfilestr
	Output FITS image.

	negatebool
	If True then pixels outside the region are masked.
Default = False.

See also

	AegeanTools.MIMAS.mask_plane()
	

	
AegeanTools.MIMAS.mask_plane(data, wcs, region, negate=False)

	Mask a 2d image (data) such that pixels within ‘region’ are set to nan.

	Parameters

	
	data2d-array
	Image array.

	wcsastropy.wcs.WCS
	WCS for the image in question.

	regionAegeanTools.regions.Region
	A region within which the image pixels will be masked.

	negatebool
	If True then pixels outside the region are masked.
Default = False.

	Returns

	
	masked2d-array
	The original array, but masked as required.

	
AegeanTools.MIMAS.mask_table(region, table, negate=False, racol='ra', deccol='dec')

	Apply a given mask (region) to the table, removing all the rows with ra/dec inside the region
If negate=False then remove the rows with ra/dec outside the region.

	Parameters

	
	regionAegeanTools.regions.Region
	Region to mask.

	tableAstropy.table.Table
	Table to be masked.

	negatebool
	If True then pixels outside the region are masked.
Default = False.

	racol, deccolstr
	The name of the columns in table that should be interpreted as ra and dec.
Default = ‘ra’, ‘dec’

	Returns

	
	maskedAstropy.table.Table
	A view of the given table which has been masked.

	
AegeanTools.MIMAS.mim2fits(mimfile, fitsfile)

	Convert a MIMAS region (.mim) file into a MOC region (.fits) file.

	Parameters

	
	mimfilestr
	Input file in MIMAS format.

	fitsfilestr
	Output file.

	
AegeanTools.MIMAS.mim2reg(mimfile, regfile)

	Convert a MIMAS region (.mim) file into a DS9 region (.reg) file.

	Parameters

	
	mimfilestr
	Input file in MIMAS format.

	regfilestr
	Output file.

	
AegeanTools.MIMAS.poly2poly(line)

	Parse a string of text containing a DS9 description of a polygon.

This function works but is not very robust due to the constraints of healpy.

	Parameters

	
	linestr
	A string containing a DS9 region command for a polygon.

	Returns

	
	poly[ra, dec, …]
	The coordinates of the polygon.

	
AegeanTools.MIMAS.reg2mim(regfile, mimfile, maxdepth)

	Parse a DS9 region file and write a MIMAS region (.mim) file.

	Parameters

	
	regfilestr
	DS9 region (.reg) file.

	mimfilestr
	MIMAS region (.mim) file.

	maxdepthstr
	Depth/resolution of the region file.

	
AegeanTools.MIMAS.save_as_image(region, filename)

	Convert a MIMAS region (.mim) file into a image (eg .png)

	Parameters

	
	regionAegeanTools.regions.Region
	Region of interest.

	filenamestr
	Output filename.

	
AegeanTools.MIMAS.save_region(region, filename)

	Save the given region to a file

	Parameters

	
	regionAegeanTools.regions.Region
	A region.

	filenamestr
	Output file name.

models

Different types of sources that Aegean is able to fit

	
class AegeanTools.models.ComponentSource

	A Gaussian component, aka a source, that was measured by Aegean.

See also

	AegeanTools.flags
	

	Attributes

	
	islandint
	The island which this component is part of.

	sourceint
	The source number within the island.

	background, local_rmsfloat
	Background and local noise level in the image at the location of this source.

	ra, err_ra, dec, err-decfloat
	Sky location of the source including uncertainties. Decimal degrees.

	ra_str, dec_strstr
	Sky location in HH:MM:SS.SS +DD:MM:SS.SS format.

	galacticbool
	If true then ra,dec are interpreted as glat,glon instead.
Default = False.
This is a class attribute, not an instance attribute.

	peak_flux, err_peak_fluxfloat
	The peak flux and associated uncertainty.

	int_flux, err_int_fluxfloat
	Integrated flux and associated uncertainty.

	a, err_a, b, err_b, pa, err_pa: float
	Shape parameters for this source and associated uncertainties.
a/b are in arcsec, pa is in degrees East of North.

	residual_mean, residual_stdfloat
	The mean and standard deviation of the model-data for this island
of pixels.

	psf_a, psf_b, psf_pafloat
	The shape parameters for the point spread function
(degrees).

	flagsint
	Flags. See AegeanTools.flags.

	uuidstr
	Unique ID for this source. This is random and not dependent on the source properties.

	
class AegeanTools.models.DummyLM

	A dummy copy of the lmfit results, for use when no fitting was done.

	Attributes

	
	residual[np.nan, np.nan]
	The residual background and rms.

	success: bool
	False - the fitting has failed.

	
class AegeanTools.models.GlobalFittingData

	A class to hold the properties associated with an image.
[These were once in the global scope of a monolithic script, hence the name].
(should be) Read-only once created.
Used by island fitting subprocesses.

	Attributes

	
	imgAegeanTools.fits_image.FitsImage
	Image that is being analysed, aka the input image.

	dcurve2d-array
	Image of +1,0,-1 representing the curvature of the input image.

	rmsimg, bkgimg2d-array
	The noise and background of the input image.

	hdu_headerHDUHeader
	FITS header for the input image.

	beamAegeanTools.wcs_helpers.Beam
	The synthesized beam of the input image.

	data_pix2d-array
	A link to the data array that is contained within the img.

	dtype{np.float32, np.float64}
	The data type for the input image. Will be enforced upon writing.

	regionAegeanTools.regions.Region
	The region that will be used to limit the source finding of Aegean.

	wcshelperAegeanTools.wcs_helpers.WCSHelper
	A helper object for WCS operations, created from hdu_header.

	blankbool
	If true, then the input image will be blanked at the location of each of
the measured islands.

	
class AegeanTools.models.IslandFittingData(isle_num=0, i=None, scalars=None, offsets=(0, 0, 1, 1), doislandflux=False)

	All the data required to fit a single island.
Instances are pickled and passed to the fitting subprocesses

	Attributes

	
	isle_numint
	island number

	i2d-array
	a 2D numpy array of pixel values

	scalars(innerclip, outerclip, max_summits)
	Inner and outer clipping limits (sigma), and the maximum number of components that should be fit.

	offsets(xmin, xmax, ymin, ymax)
	The offset between the boundaries of the island i, within the
larger image.

	doislandfluxboolean
	If true then also measure properties of the island.

	
class AegeanTools.models.IslandSource

	An island of pixels.

See also

	AegeanTools.flags
	

	Attributes

	
	island: int
	The island identification number

	componentsint
	The number of components that make up this island.

	background, local_rmsfloat
	Background and local noise level in the image at the location of this source.

	ra, decfloat
	Sky location of the brightest pixel in this island. Decimal degrees.

	ra_str, dec_strstr
	Sky location in HH:MM:SS.SS +DD:MM:SS.SS format.

	galacticbool
	If true then ra,dec are interpreted as glat,glon instead.
Default = False.
This is a class attribute, not an instance attribute.

	peak_flux, peak_pixelfloat
	Value of the brightest pixel for this source.

	int_flux, err_int_fluxfloat
	Integrated flux and associated uncertainty.

	x_width, y_widthint
	The extent of the island in pixel space. The width is of the smallest bounding box.

	max_angular_sizefloat
	The maximum angular size of the island in sky coordinates (degrees).

	pafloat
	Position angle for the line representing the maximum angular size.

	pixelsint
	The number of pixels covered by this island.

	areafloat
	The area of this island in sky coordinates (square degrees).

	beam_areafloat
	The area of the synthesized beam of the image at the location of the brightest pixel.
(square degrees).

	etafloat
	A factor that accounts for the difference between the integrated flux
counted by summing pixels, and the integrated flux that would be produced
by integrating an appropriately sized Gaussian.

	extentfloat
	

	contourlist
	A list of pixel coordinates that mark the pixel boundaries for this island
of pixels.

	max_angular_size_anchors[x1, y1, x2, y2]
	The end points of the vector that describes the maximum angular size
of this island.

	flagsint
	Flags. See AegeanTools.flags.

	uuidstr
	Unique ID for this source. This is random and not dependent on the source properties.

	
class AegeanTools.models.PixelIsland(dim=2)

	An island of pixels within an image or cube

	Attributes

	
	dimint
	The number of dimensions of this island. dim >=2, default is 2 (ra/dec).

	bounding_box[(min, max), (min, max), …]
	A bounding box for this island. len(bounding_box)==dim.

	masknp.array(dtype=bool)
	A mask that represents the island within the bounding box.

	
calc_bounding_box(data, offsets)

	Compute the bounding box for a data cube of dimension dim.
The bounding box will be the smallest nd-cube that bounds the non-zero entries of the cube.

	Parameters

	
	datanp.ndarray
	Data array with dimension equal to self.dim

	offsets[xmin, ymin, …]
	The offset between the image zero index and the zero index of data. len(offsets)==dim

	
set_mask(data)

	
	Parameters

	
	datanp.array
	

	
class AegeanTools.models.SimpleSource

	The base source class for an elliptical Gaussian.

See also

	AegeanTools.flags
	

	Attributes

	
	background, local_rmsfloat
	Background and local noise level in the image at the location of this source.

	ra, decfloat
	Sky location of this source. Decimal degrees.

	galacticbool
	If true then ra,dec are interpreted as glat,glon instead.
Default = False.
This is a class attribute, not an instance attribute.

	peak_flux, err_peak_fluxfloat
	The peak flux value and associated uncertainty.

	peak_pixelfloat
	Value of the brightest pixel for this source.

	flagsint
	Flags. See AegeanTools.flags.

	a, b, pafloat
	Shape parameters for this source.

	uuidstr
	Unique ID for this source. This is random and not dependent on the source properties.

	
as_list()

	Return an ordered list of the source attributes

	
AegeanTools.models.classify_catalog(catalog)

	Look at a list of sources and split them according to their class.

	Parameters

	
	catalogiterable
	A list or iterable object of {SimpleSource, IslandSource, ComponentSource} objects, possibly mixed.
Any other objects will be silently ignored.

	Returns

	
	componentslist
	List of sources of type ComponentSource

	islandslist
	List of sources of type IslandSource

	simpleslist
	List of source of type SimpleSource

	
AegeanTools.models.island_itergen(catalog)

	Iterate over a catalog of sources, and return an island worth of sources at a time.
Yields a list of components, one island at a time

	Parameters

	
	catalogiterable
	A list or iterable of AegeanTools.models.ComponentSource objects.

	Yields

	
	grouplist
	A list of all sources within an island, one island at a time.

msq2

Provie a class which performs the marching squares algorithm on an image.
The desired output is a set of regions / contours.

	
class AegeanTools.msq2.MarchingSquares(data)

	Implementation of a marching squares algorithm.
With reference to http://devblog.phillipspiess.com/2010/02/23/better-know-an-algorithm-1-marching-squares/
but written in python

	
do_march()

	March about and trace the outline of our object

	Returns

	
	perimeterlist
	The pixels on the perimeter of the region [[x1, y1], …]

	
do_march_all()

	Recursive march in the case that we have a fragmented shape.

	Returns

	
	perimeters[perimeter1, …]
	The perimeters of all the regions in the image.

See also

	AegeanTools.msq2.MarchingSquares.do_march()
	

	
find_start_point()

	Find the first location in our array that is not empty

	
solid(x, y)

	Determine whether the pixel x,y is nonzero

	Parameters

	
	x, yint
	The pixel of interest.

	Returns

	
	solidbool
	True if the pixel is not zero.

	
step(x, y)

	Move from the current location to the next

	Parameters

	
	x, yint
	The current location

	
walk_perimeter(startx, starty)

	Starting at a point on the perimeter of a region, ‘walk’ the perimeter to return
to the starting point. Record the path taken.

	Parameters

	
	startx, startyint
	The starting location. Assumed to be on the perimeter of a region.

	Returns

	
	perimeterlist
	A list of pixel coordinates [[x1,y1], …] that constitute the perimeter of the region.

regions

Describe sky areas as a collection of HEALPix pixels

	
class AegeanTools.regions.Region(maxdepth=11)

	A Region object represents a footprint on the sky. This is done in a way similar to a MOC.
The region is stored as a list of healpix pixels, allowing for binary set-like operations.

	Attributes

	
	maxdepthint
	The depth or resolution of the region.
At the deepest level there will be 4*2**maxdepth pixels on the sky.
Default = 11

	pixeldictdict
	A dictionary of sets, each set containing the pixels within the region. The sets are indexed by their
layer number.

	demotedset
	A representation of this region at the deepest layer.

	
add_circles(ra_cen, dec_cen, radius, depth=None)

	Add one or more circles to this region

	Parameters

	
	ra_cen, dec_cen, radiusfloat or list
	The center and radius of the circle or circles to add to this region.

	depthint
	The depth at which the given circles will be inserted.

	
add_pixels(pix, depth)

	Add one or more HEALPix pixels to this region.

	Parameters

	
	pixint or iterable
	The pixels to be added

	depthint
	The depth at which the pixels are added.

	
add_poly(positions, depth=None)

	Add a single polygon to this region.

	Parameters

	
	positions[[ra, dec], …]
	Positions for the vertices of the polygon. The polygon needs to be convex and non-intersecting.

	depthint
	The deepth at which the polygon will be inserted.

	
get_area(degrees=True)

	Calculate the total area represented by this region.

	Parameters

	
	degreesbool
	If True then return the area in square degrees, otherwise use steradians.
Default = True.

	Returns

	
	areafloat
	The area of the region.

	
get_demoted()

	Get a representation of this region at the deepest level.

	Returns

	
	demotedset
	A set of pixels, at the highest resolution.

	
intersect(other)

	Combine with another Region by performing intersection on their pixlists.

Requires both regions to have the same maxdepth.

	Parameters

	
	otherAegeanTools.regions.Region
	The region to be combined.

	
classmethod load(mimfile)

	Create a region object from the given file.

	Parameters

	
	mimfilestr
	File to load.

	Returns

	
	regionAegeanTools.regions.Region
	A region object

	
static radec2sky(ra, dec)

	Convert [ra], [dec] to [(ra[0], dec[0]),….]
and also ra,dec to [(ra,dec)] if ra/dec are not iterable

	Parameters

	
	ra, decfloat or iterable
	Sky coordinates

	Returns

	
	skynumpy.array
	array of (ra,dec) coordinates.

	
save(mimfile)

	Save this region to a file

	Parameters

	
	mimfilestr
	File to write

	
static sky2ang(sky)

	Convert ra,dec coordinates to theta,phi coordinates
ra -> phi
dec -> theta

	Parameters

	
	skynumpy.array
	Array of (ra,dec) coordinates.
See AegeanTools.regions.Region.radec2sky()

	Returns

	
	theta_phinumpy.array
	Array of (theta,phi) coordinates.

	
classmethod sky2vec(sky)

	Convert sky positions in to 3d-vectors on the unit sphere.

	Parameters

	
	skynumpy.array
	Sky coordinates as an array of (ra,dec)

	Returns

	
	vecnumpy.array
	Unit vectors as an array of (x,y,z)

See also

	AegeanTools.regions.Region.vec2sky()
	

	
sky_within(ra, dec, degin=False)

	Test whether a sky position is within this region

	Parameters

	
	ra, decfloat
	Sky position.

	deginbool
	If True the ra/dec is interpreted as degrees, otherwise as radians.
Default = False.

	Returns

	
	withinbool
	True if the given position is within one of the region’s pixels.

	
symmetric_difference(other)

	Combine with another Region by performing the symmetric difference of their pixlists.

Requires both regions to have the same maxdepth.

	Parameters

	
	otherAegeanTools.regions.Region
	The region to be combined.

	
union(other, renorm=True)

	Add another Region by performing union on their pixlists.

	Parameters

	
	otherAegeanTools.regions.Region
	The region to be combined.

	renormbool
	Perform renormalisation after the operation?
Default = True.

	
classmethod vec2sky(vec, degrees=False)

	Convert [x,y,z] vectors into sky coordinates ra,dec

	Parameters

	
	vecnumpy.array
	Unit vectors as an array of (x,y,z)

	degrees
	

	Returns

	
	skynumpy.array
	Sky coordinates as an array of (ra,dec)

See also

	AegeanTools.regions.Region.sky2vec()
	

	
without(other)

	Subtract another Region by performing a difference operation on their pixlists.

Requires both regions to have the same maxdepth.

	Parameters

	
	otherAegeanTools.regions.Region
	The region to be combined.

	
write_fits(filename, moctool='')

	Write a fits file representing the MOC of this region.

	Parameters

	
	filenamestr
	File to write

	moctoolstr
	String to be written to fits header with key “MOCTOOL”.
Default = ‘’

	
write_reg(filename)

	Write a ds9 region file that represents this region as a set of diamonds.

	Parameters

	
	filenamestr
	File to write

source_finder

The Aegean source finding program.

	
class AegeanTools.source_finder.SourceFinder(**kwargs)

	The Aegean source finding algorithm

	Attributes

	
	global_dataAegeanTools.models.GlobalFittingData
	State holder for properties.

	sourceslist
	List of sources that have been found/measured.

	loglogging.log
	Logger to use.
Default = None

	
estimate_lmfit_parinfo(data, rmsimg, curve, beam, innerclip, outerclip=None, offsets=(0, 0), max_summits=None)

	Estimates the number of sources in an island and returns
initial parameters for the fit as well as limits on those parameters.

	Parameters

	
	data2d-array
	(sub) image of flux values. Background should be subtracted.

	rmsimg2d-array
	Image of 1sigma values

	curve2d-array
	Image of curvature values [-1,0,+1]

	beamAegeanTools.fits_image.Beam
	The beam information for the image.

	innerclip, outerclipfloat
	Inerr and outer level for clipping (sigmas).

	offsets(int, int)
	The (x,y) offset of data within it’s parent image

	max_summitsint
	If not None, only this many summits/components will be fit. More
components may be present in the island, but subsequent components
will not have free parameters.

	Returns

	
	modellmfit.Parameters
	The initial estimate of parameters for the components
within this island.

	
find_sources_in_image(filename, hdu_index=0, outfile=None, rms=None, bkg=None, max_summits=None, innerclip=5, outerclip=4, cores=None, rmsin=None, bkgin=None, beam=None, doislandflux=False, nopositive=False, nonegative=False, mask=None, imgpsf=None, blank=False, docov=True, cube_index=None, progress=False)

	Run the Aegean source finder.

	Parameters

	
	filenamestr or HDUList
	Image filename or HDUList.

	hdu_indexint
	The index of the FITS HDU (extension).

	outfilestr
	file for printing catalog
(NOT a table, just a text file of my own design)

	rmsfloat
	Use this rms for the entire image
(will also assume that background is 0)

	max_summitsint
	Fit up to this many components to each island
(extras are included but not fit)

	innerclip, outerclipfloat
	The seed (inner) and flood (outer) clipping level (sigmas).

	coresint
	Number of CPU cores to use. None means all cores.

	rmsin, bkginstr or HDUList
	Filename or HDUList for the noise and background images.
If either are None, then it will be calculated internally.

	beam(major, minor, pa)
	Floats representing the synthesised beam (degrees).
Replaces whatever is given in the FITS header.
If the FITS header has no BMAJ/BMIN then this is required.

	doislandfluxbool
	If True then each island will also be characterized.

	nopositive, nonegativebool
	Whether to return positive or negative sources.
Default nopositive=False, nonegative=True.

	maskstr
	The filename of a region file created by MIMAS.
Islands outside of this region will be ignored.

	imgpsfstr or HDUList
	Filename or HDUList for a psf image.

	blankbool
	Cause the output image to be blanked where islands are found.

	docovbool
	If True then include covariance matrix in the fitting process.
Default=True

	cube_indexint
	For image cubes, cube_index determines which slice is used.

	progressbool
	If true then show a progress bar when fitting island groups

	Returns

	
	sourceslist
	List of sources found.

	
load_globals(filename, hdu_index=0, bkgin=None, rmsin=None, beam=None, verb=False, rms=None, bkg=None, cores=1, do_curve=False, mask=None, psf=None, blank=False, docov=True, cube_index=None)

	Populate the global_data object by loading or calculating
the various components

	Parameters

	
	filenamestr or HDUList
	Main image which source finding is run on

	hdu_indexint
	HDU index of the image within the fits file, default is 0 (first)

	bkgin, rmsinstr or HDUList
	background and noise image filename or HDUList

	beamAegeanTools.fits_image.Beam
	Beam object representing the synthsized beam.
Will replace what is in the FITS header.

	verbbool
	Verbose. Write extra lines to INFO level log.

	rms, bkgfloat
	A float that represents a constant rms/bkg levels for the image.
Default = None, which causes the rms/bkg to be loaded or calculated.

	coresint
	Number of cores to use if different from what is autodetected.

	do_curvebool
	If True a curvature map will be created, default=True.

	maskstr or AegeanTools.regions.Region
	filename or Region object

	psfstr or HDUList
	Filename or HDUList of a psf image

	blankbool
	True = blank output image where islands are found.
Default = False.

	docovbool
	True = use covariance matrix in fitting.
Default = True.

	cube_indexint
	For an image cube, which slice to use.

	
priorized_fit_islands(filename, catalogue, hdu_index=0, outfile=None, bkgin=None, rmsin=None, cores=1, rms=None, bkg=None, beam=None, imgpsf=None, catpsf=None, stage=3, ratio=None, outerclip=3, doregroup=True, regroup_eps=None, docov=True, cube_index=None, progress=False)

	Take an input catalog, and image, and optional background/noise images
fit the flux and ra/dec for each of the given sources, keeping the
morphology fixed

Multiple cores can be specified, and will be used.

	Parameters

	
	filenamestr or HDUList
	Image filename or HDUList.

	cataloguestr or list
	Input catalogue file name or list of ComponentSource objects.

	hdu_indexint
	The index of the FITS HDU (extension).

	outfilestr
	file for printing catalog
(NOT a table, just a text file of my own design)

	rmsin, bkginstr or HDUList
	Filename or HDUList for the noise and background images.
If either are None, then it will be calculated internally.

	coresint
	Number of CPU cores to use. None means all cores.

	rmsfloat
	Use this rms for the entire image
(will also assume that background is 0)

	beam(float, float, float)
	(major, minor, pa) representing the synthesised beam (degrees).
Replaces whatever is given in the FITS header.
If the FITS header has no BMAJ/BMIN then this is required.

	imgpsfstr or HDUList
	Filename or HDUList for a psf image.

	catpsfstr or HDUList
	Filename or HDUList for the catalogue psf image.

	stageint
	Refitting stage

	ratiofloat
	If not None - ratio of image psf to catalog psf,
otherwise interpret from catalogue or image if possible

	outerclipfloat
	The flood (outer) clipping level (sigmas).

	doregroupbool, Default=True
	Relabel all the islands/groups to ensure that nearby
components are jointly fit.

	regroup_eps: float, Default=None
	The linking parameter for regouping. Components that are
closer than this distance (in arcmin) will be jointly fit.
If NONE, then use 4x the average source major axis size (after
rescaling if required).

	docovbool, Default=True
	If True then include covariance matrix in the fitting process.

	cube_indexint, Default=None
	For image cubes, slice determines which slice is used.

	progressbool, Default=True
	Show a progress bar when fitting island groups

	Returns

	
	sourceslist
	List of sources measured.

	
result_to_components(result, model, island_data, isflags)

	Convert fitting results into a set of components

	Parameters

	
	resultlmfit.MinimizerResult
	The fitting results.

	modellmfit.Parameters
	The model that was fit.

	island_dataAegeanTools.models.IslandFittingData
	Data about the island that was fit.

	isflagsint
	Flags that should be added to this island
in addition to those within the model)

	Returns

	
	sourceslist
	A list of components, and islands if requested.

	
save_background_files(image_filename, hdu_index=0, bkgin=None, rmsin=None, beam=None, rms=None, bkg=None, cores=1, outbase=None)

	Generate and save the background and RMS maps as FITS files.
They are saved in the current directly as aegean-background.fits
and aegean-rms.fits.

	Parameters

	
	image_filenamestr or HDUList
	Input image.

	hdu_indexint
	If fits file has more than one hdu, it can be specified here.
Default = 0.

	bkgin, rmsinstr or HDUList
	Background and noise image filename or HDUList

	beamAegeanTools.fits_image.Beam
	Beam object representing the synthsized beam.
Will replace what is in the FITS header.

	rms, bkgfloat
	A float that represents a constant rms/bkg level for the image.
Default = None, which causes the rms/bkg to be loaded or calculated.

	coresint
	Number of cores to use if different from what is autodetected.

	outbasestr
	Basename for output files.

	
save_image(outname)

	Save the image data.
This is probably only useful if the image data has been blanked.

	Parameters

	
	outnamestr
	Name for the output file.

	
AegeanTools.source_finder.characterise_islands(islands, im, bkg, rms, wcshelper, err_type='best', max_summits=None, do_islandfit=False)

	Do the source characterisation based on the initial estimate of
the island properties.

	Parameters

	
	islands[lmfit.Parameters, …]
	The initial estimate of parameters for the components within each island.

	im, bkg, rmsnp.ndarray
	The image, background, and noise maps

	wcshelperAegeanTools.wcs_helpers.WCSHelper
	A wcs helper object

	err_typestr or None
	The method for calculating uncertainties on parameters:
‘best’ - Uncertainties measured based on covariance matrix of the

fit and of the data
See Hancock et al. 2018 for a description of this process.

‘condon’ - Uncertainties are calculated based on Condon’98 (?year)
‘raw’ - uncertainties directly from the covariance matrix only
‘none’ or None - No uncertainties, all will be set to -1.

	max_summitsint
	The maximum number of summits that will be fit.
The final model may contain additional components but
only the first few will be fit.

	do_islandfitbool
	If True, then also characterise islands as well as components.
Default=False.

	Returns

	
	sources[AegeanTools.models.SimpleSource, …]
	A list of characterised sources of type
AegeanTools.models.impleSource,
AegeanTools.models.ComponentSource,
or AegeanTools.models.IslandSource.

	
AegeanTools.source_finder.check_cores(cores)

	Determine how many cores we are able to use.
Return 1 if we are not able to make a queue via pprocess.

	Parameters

	
	coresint
	The number of cores that are requested.

	Returns

	
	coresint
	The number of cores available.

	
AegeanTools.source_finder.estimate_parinfo_image(islands, im, rms, wcshelper, max_summits=None, log=<Logger dummy (WARNING)>)

	Estimate the initial parameters for fitting for each of the islands of
pixels. The source sizes will be initialised as the psf of the image,
which is either determined by the WCS of the image file or the psf map
if one is supplied.

	Parameters

	
	islands[AegeanTools.models.IslandFittingData, …]
	A list of islands which will be converted into groups of sources

	im, rmsnumpy.ndarray
	The image and noise maps

	wcshelperAegeanTools.wcs_helpers.WCSHelper
	A wcshelper object valid for the image map

	max_summitsint or None
	The maximum number of summits that will be fit. Any in addition to this
will be estimated but their parameters will have vary=False.

	loglogging.Logger or None
	For handling logs (or not)

	max_summitsint
	The maximum number of summits that will be fit. Any in addition to this
will be estimated but their parameters will have vary=False.

	loglogging.Logger or None
	For handling logs (or not)

	Returns

	
	sources[lmfit.Parameters, …]
	The initial estimate of parameters for the components within each island.

	
AegeanTools.source_finder.find_islands(im, bkg, rms, seed_clip=5.0, flood_clip=4.0, log=<Logger dummy (WARNING)>)

	This function designed to be run as a stand alone process

	Parameters

	
	im, bkg, rmsnumpy.ndarray
	Image, background, and rms maps

	seed_clip, flood_clipfloat
	The seed clip which is used to create islands, and flood clip which is
used to grow islands. The units are in SNR.

	loglogging.Logger or None
	For handling logs (or not)

	Returns

	
	islands[AegeanTools.models.PixelIsland, …]
	a list of islands

	
AegeanTools.source_finder.fit_islands_parinfo(models, im, rms, wcshelper)

	Turn a list of sources into a set of islands and parameter estimates
which can then be characterised.

	Parameters

	
	models[lmfit.Parinfo, …]
	A list of sources in the catalogue.

	imnp.ndarray
	The image map

	wcshelperAegeanTools.wcs_helpers.WCSHelper
	A wcs object valid for the image map

	Returns

	
	islands[AegeanTools.models.SimpleSource, …]
	a list of islands

	
AegeanTools.source_finder.fix_shape(source)

	Ensure that a>=b for a given source object.
If a<b then swap a/b and increment pa by 90.
err_a/err_b are also swapped as needed.

	Parameters

	
	sourceobject
	any object with a/b/pa/err_a/err_b properties

	
AegeanTools.source_finder.get_aux_files(basename)

	Look for and return all the aux files that are associated with
this filename. Will look for:
- background (_bkg.fits)
- rms (_rms.fits)
- mask (.mim)
- catalogue (_comp.fits)
- psf map (_psf.fits)

will return filenames if they exist, or None where they do not.

	Parameters

	
	basenamestr
	The name/path of the input image.

	Returns

	
	auxdict
	Dict of filenames or None with keys (bkg, rms, mask, cat, psf)

	
AegeanTools.source_finder.pa_limit(pa)

	Position angle is periodic with period 180 deg
Constrain pa such that -90<pa<=90

	Parameters

	
	pafloat
	Initial position angle.

	Returns

	
	pafloat
	Rotate position angle.

	
AegeanTools.source_finder.priorized_islands_parinfo(sources, im, wcshelper, stage=3)

	Turn a list of sources into a set of islands and parameter estimates
which can then be characterised.

	Parameters

	
	sources[AegeanTools.models.SimpleSource, …]
	A list of sources in the catalogue.

	imnp.ndarray
	The image map

	wcshelperAegeanTools.wcs_helpers.WCSHelper
	A wcs object valid for the image map

	stageint
	The priorized fitting stage which determines which
parameters are fit/fixed. One of:
1 - Fit for flux only. All other params are fixed.
2 - Fit for flux and position. Shape parameters are fixed.
3 - Fit for flux, position, and shape.

	Returns

	
	islands[AegeanTools.models.ComponentSource, …]
	a list of components

	
AegeanTools.source_finder.save_catalogue(sources, output, format=None)

	Write a catalogue of sources

	Parameters

	
	sources[AegeanTools.models.SimpleSource, …]
	A list of characterised sources of type SimpleSource,
ComponentSource, or IslandSource.

	outputstr
	Output filename

	formatstr
	A descriptor of the output format. Options are:
#TODO add a bunch of options
‘auto’ or None - infer from filename extension

	Returns

	
	None
	

	
AegeanTools.source_finder.theta_limit(theta)

	Angle theta is periodic with period pi.
Constrain theta such that -pi/2<theta<=pi/2.

	Parameters

	
	thetafloat
	Input angle.

	Returns

	
	thetafloat
	Rotate angle.

wcs_helpers

This module contains two classes that provide WCS functions that are not
part of the WCS toolkit, as well as some wrappers around the provided tools
to make them a lot easier to use.

	
class AegeanTools.wcs_helpers.Beam(a, b, pa)

	Small class to hold the properties of the beam.
Properties are a,b,pa. No assumptions are made as to the units, but both a and b have to be >0.

	
class AegeanTools.wcs_helpers.WCSHelper(wcs, beam, pixscale, refpix, psf_file=None)

	A wrapper around astropy.wcs that provides extra functionality, and hides the c/fortran indexing troubles.

Additionally allow psf information to be described in a map instead of the fits header of the image.

Useful functions not provided by astropy.wcs

	sky2pix/pix2sky functions for vectors and ellipses.

	functions for calculating the beam in sky/pixel coords

	the ability to change the beam according to dec-lat

This class tracks both the synthesized beam of the image (beam) and the point spread function (psf).
You may think that these things are the same and interchangeable but they are not always.
The beam is defined in the wcs of the image header, while the psf can be defined by
providing a new image file with 3 dimensions (ra, dec, psf) where the psf is (a, b, pa).
TODO: Check that the above is consistent with the code, and adjust until they are.

	Attributes

	
	wcsastropy.wcs.WCS
	WCS object

	beamAegeanTools.wcs_helpers.Beam
	The synthesized beam as defined by the fits header (at the reference location).

	pixscale(float, float)
	The pixel scale at the reference location (degrees)

	refpix(float, float)
	The reference location in pixel coordinates

	psf_filestr
	Filename for a psf map

	psf_mapnp.ndarray
	A map of the psf as a function of sky position.

	psf_wcsnp.ndarray
	The WCS object for the psf map

	
classmethod from_file(filename, beam=None, psf_file=None)

	Create a new WCSHelper class from a given fits file.

	Parameters

	
	filenamestring
	The file to be read

	beamAegeanTools.wcs_helpers.Beam or None
	The synthesized beam. If the supplied beam is None then one is constructed form the header.

	psf_filestr
	Filename for a psf map

	Returns

	
	objAegeanTools.wcs_helpers.WCSHelper
	A helper object

	
classmethod from_header(header, beam=None, psf_file=None)

	Create a new WCSHelper class from the given header.

	Parameters

	
	headerastropy.fits.HDUHeader or string
	The header to be used to create the WCS helper

	beamAegeanTools.wcs_helpers.Beam or None
	The synthesized beam. If the supplied beam is None then one is constructed form the header.

	psf_filestr
	Filename for a psf map

	Returns

	
	objAegeanTools.wcs_helpers.WCSHelper
	A helper object.

	
get_beamarea_deg2(ra, dec)

	Calculate the area of the synthesized beam in square degrees.

	Parameters

	
	ra, decfloat
	The sky coordinates at which the calculation is made.

	Returns

	
	areafloat
	The beam area in square degrees.

	
get_beamarea_pix(ra, dec)

	Calculate the beam area in square pixels.

	Parameters

	
	ra, decfloat
	The sky coordinates at which the calculation is made

	dec
	

	Returns

	
	areafloat
	The beam area in square pixels.

	
get_psf_pix2pix(x, y)

	Determine the beam in pixels at the given location in pixel coordinates.
The psf is in pixel coordinates.

	Parameters

	
	x , yfloat
	The pixel coordinates at which the beam is determined.

	Returns

	
	a, b, theta(float, float, float)
	The psf semi-major axis (pixels), semi-minor axis (pixels), and rotation angle (degrees).
If a psf is defined then it is the psf that is returned, otherwise the image
restoring beam is returned.

	
get_psf_sky2pix(ra, dec)

	Determine the psf (a,b,pa) at a given sky location.
The psf is in pixel coordinates.

	Parameters

	
	ra, decfloat
	The sky position (degrees).

	Returns

	
	a, b, pa(float, float, float)
	The psf semi-major axis (pixels), semi-minor axis (pixels), and rotation angle (degrees).
If a psf is defined then it is the psf that is returned, otherwise the image
restoring beam is returned.

	
get_psf_sky2sky(ra, dec)

	Determine the point spread function in sky coordinates at a given sky location.
The psf is returned in degrees.

	Parameters

	
	ra, decfloat
	The sky position (degrees).

	Returns

	
	a, b, pa(float, float, float)
	The psf semi-major axis, semi-minor axis, and position angle in (degrees).
If a psf is defined then it is the psf that is returned, otherwise the image
restoring beam is returned.

	
get_skybeam(ra, dec)

	Determine the beam at the given sky location.

	Parameters

	
	ra, decfloat
	The sky coordinates at which the beam is determined.

	Returns

	
	beamAegeanTools.wcs_helpers.Beam
	A beam object, with a/b/pa in sky coordinates

	
pix2sky(pixel)

	Convert pixel coordinates into sky coordinates.
Computed on the image wcs.

	Parameters

	
	pixel(float, float)
	The (x,y) pixel coordinates

	Returns

	
	sky(float, float)
	The (ra,dec) sky coordinates in degrees

	
pix2sky_ellipse(pixel, sx, sy, theta)

	Convert an ellipse from pixel to sky coordinates.

	Parameters

	
	pixel(float, float)
	The (x, y) coordinates of the center of the ellipse.

	sx, syfloat
	The major and minor axes (FHWM) of the ellipse, in pixels.

	thetafloat
	The rotation angle of the ellipse (degrees).
theta = 0 corresponds to the ellipse being aligned with the x-axis.

	Returns

	
	ra, decfloat
	The (ra, dec) coordinates of the center of the ellipse (degrees).

	a, bfloat
	The semi-major and semi-minor axis of the ellipse (degrees).

	pafloat
	The position angle of the ellipse (degrees).

	
pix2sky_vec(pixel, r, theta)

	Given and input position and vector in pixel coordinates, calculate
the equivalent position and vector in sky coordinates.

	Parameters

	
	pixel(float, float)
	origin of vector in pixel coordinates

	rfloat
	magnitude of vector in pixels

	thetafloat
	angle of vector in degrees

	Returns

	
	ra, decfloat
	The (ra, dec) of the origin point (degrees).

	r, pafloat
	The magnitude and position angle of the vector (degrees).

	
psf_sky2pix(pos)

	Convert sky coordinates into pixel coordinates.
Computed on the psf wcs.

	Parameters

	
	pos(float, float)
	The (ra, dec) sky coordinates (degrees)

	Returns

	
	pixel(float, float)
	The (x,y) pixel coordinates

	
sky2pix(pos)

	Convert sky coordinates into pixel coordinates.
Computed on the image wcs.

	Parameters

	
	pos(float, float)
	The (ra, dec) sky coordinates (degrees)

	Returns

	
	pixel(float, float)
	The (x,y) pixel coordinates

	
sky2pix_ellipse(pos, a, b, pa)

	Convert an ellipse from sky to pixel coordinates.

	Parameters

	
	pos(float, float)
	The (ra, dec) of the ellipse center (degrees).

	a, b, pa: float
	The semi-major axis, semi-minor axis and position angle of the ellipse (degrees).

	Returns

	
	x, yfloat
	The (x, y) pixel coordinates of the ellipse center.

	sx, syfloat
	The major and minor axes (FWHM) in pixels.

	thetafloat
	The rotation angle of the ellipse (degrees).
theta = 0 corresponds to the ellipse being aligned with the x-axis.

	
sky2pix_vec(pos, r, pa)

	Convert a vector from sky to pixel coords.
The vector has a magnitude, angle, and an origin on the sky.

	Parameters

	
	pos(float, float)
	The (ra, dec) of the origin of the vector (degrees).

	rfloat
	The magnitude or length of the vector (degrees).

	pafloat
	The position angle of the vector (degrees).

	Returns

	
	x, yfloat
	The pixel coordinates of the origin.

	r, thetafloat
	The magnitude (pixels) and angle (degrees) of the vector.

	
sky_sep(pix1, pix2)

	calculate the GCD sky separation (degrees) between two pixels.

	Parameters

	
	pix1, pix2(float, float)
	The (x,y) pixel coordinates for the two positions.

	Returns

	
	distfloat
	The distance between the two points (degrees).

	
AegeanTools.wcs_helpers.fix_aips_header(header)

	Search through an image header. If the keywords BMAJ/BMIN/BPA are not set,
but there are AIPS history cards, then we can populate the BMAJ/BMIN/BPA.
Fix the header if possible, otherwise don’t. Either way, don’t complain.

	Parameters

	
	headerastropy.io.fits.HDUHeader
	Fits header which may or may not have AIPS history cards.

	Returns

	
	headerastropy.io.fits.HDUHeader
	A header which has BMAJ, BMIN, and BPA keys, as well as a new HISTORY card.

	
AegeanTools.wcs_helpers.get_beam(header)

	Create a AegeanTools.wcs_helpers.Beam object from a fits header.

BPA may be missing but will be assumed to be zero.

if BMAJ or BMIN are missing then return None instead of a beam object.

	Parameters

	
	headerastropy.io.fits.HDUHeader
	The fits header.

	Returns

	
	beamAegeanTools.wcs_helpers.Beam
	Beam object, with a, b, and pa in degrees.

	
AegeanTools.wcs_helpers.get_pixinfo(header)

	Return some pixel information based on the given hdu header
pixarea - the area of a single pixel in deg2
pixscale - the side lengths of a pixel (assuming they are square)

	Parameters

	
	headerastropy.io.fits.HDUHeader
	FITS header information

	Returns

	
	pixareafloat
	The are of a single pixel at the reference location, in square degrees.

	pixscale(float, float)
	The pixel scale in degrees, at the reference location.

Notes

The reference location is not always at the image center, and the pixel scale/area may
change over the image, depending on the projection.

AegeanTools scripts

The following scripts are provided as part of the AegeanTools package:

	aegean - Aegean source finding

	BANE - Background and Noise Estimation

	MIMAS - Multi-resolution Image Mask for Aegean Software

	AeRes - Aegean Residuals

	AeReg - Aegean Regrouping

	SR6 - Shrink Ray

AeReg

The regrouping and rescaling operations that were introduced as part of the priorized fitting have been moved into the cluster module.
The script AeReg will allow a user to access these operations from the command line such that they can see how the regrouping and rescaling operations will work before having to do the priorized fitting.

usage: regroup [-h] --input INPUT --table TABLES [--eps EPS] [--noregroup] [--ratio RATIO] [--psfheader PSFHEADER] [--debug]

optional arguments:
 -h, --help show this help message and exit

Required:
 --input INPUT The input catalogue.
 --table TABLES Table outputs, format inferred from extension.

Clustering options:
 --eps EPS The grouping parameter epsilon (~arcmin)
 --noregroup Do not perform regrouping (default False)

Scaling options:
 --ratio RATIO The ratio of synthesized beam sizes (image psf / input catalog psf).
 --psfheader PSFHEADER
 A file from which the *target* psf is read.

Other options:
 --debug Debug mode.

AeRes

If you want to get residual maps, or model maps, from Aegean then this tool is what you are looking for.

AeRes will take an image, and Aegean catalog, and write a new image with all the sources removed. You can also ask for an image that has just the sources in it.

You can use AeRes as shown below:

Usage: AeRes -c input.vot -f image.fits -r residual.fits [-m model.fits]

Options:
 -h, --help show this help message and exit
 -c CATALOG, --catalog=CATALOG
 Catalog in a format that Aegean understands. RA/DEC
 should be in degrees, a/b/pa should be in
 arcsec/arcsec/degrees.
 -f FITSFILE, --fitsimage=FITSFILE
 Input fits file.
 -r RFILE, --residual=RFILE
 Output residual fits file.
 -m MFILE, --model=MFILE
 Output model file [optional].
 --add Add components instead of subtracting them.
 --mask Instead of subtracting sources, just mask them
 --sigma=SIGMA If masking, pixels above this SNR are masked (requires
 input catalogue to list rms)
 --frac=FRAC If masking, pixels above frac*peak_flux are masked for
 each source
 --debug Debug mode.

The acceptable formats for the catalogue file are anything that Aegean can write. Use aegean.py --tformats to see the formats that Aegean can support on your machine. Usually the best idea is to just edit a table that Aegean has created.

BANE

Motivation

Aegean has an inbuilt background and noise calculation algorithm (the zones algorithm) which is very basic and is useful for images that have a slowly changing background and noise. For images with more complicated background and noise statistics it is advised that you use an external program to pre-compute these maps and then feed them into Aegean with the –background and –noise flags. Since I have not come across a program that can calculate these images in a speedy manner I have built one myself.

Aim

The quick-and-dirty method for calculating the background and noise of an image is to pass a sliding boxcar filter over the image and, for each pixel, calculate the mean and standard deviation of all pixels within a box centred on that pixel. The problem with this approach is two-fold: one - although it is easy to code it is very time consuming, and two - the standard deviation is biased in the presence of sources.

The aim of BANE is to provide an accurate measure of the background and noise properties of an image, and to do so in a relatively short amount of time.

Methodology

There are two main techniques that BANE uses to reduce the compute time for a background and noise calculation, whilst retaining a high level of accuracy.

	Since radio images have a high level of correlation between adjacent pixels, BANE does not calculate the mean and standard deviation for every pixel. It will calculate these quantities on a sparse grid of pixels and then interpolate to give the final background and noise images. For a grid spacing of 5x5 pixels this reduces the total computations by a factor of 25, with only a small amount of time required for interpolation.

	To avoid contamination from source pixels BANE performs sigma clipping. Pixels that are greater than 3sigma from the mean are masked, and this processes is repeated 3 times. The non-masked pixels are then used to calculate the median and std which are equated to be the background and rms.

BANE offers the user a set of parameters that can be used to tune the speed/accuracy to a users desire. The parameters are the grid spacing (in each of the x,y directions), and the size of the box (again in x,y directions) over which the background and noise is calculated. A grid spacing of 1x1 is equivalent to a traditional box-car smooth using the median and std.

Since we define the noise to be the variance about the median, it is necessary for BANE to make two passes over the data: the first pass calculates the background level, and the second pass calculates the deviation from this background level. This requirement doubles the run time of BANE, however for images where the background level is known to be slowly changing (on scales of the box size), a single pass is all that is required.

Processing steps

The implementation of the process isn’t that important but the idea is as follows:

	select every Nth pixel in the image to form a grid (where N is the grid size, and can be different in the x and y directions).

	around each grid point draw a box that is MxM pixels wide (where M is the box size, and can be different in the x,y directions).

	do sigma clipping (3 rounds at 3sigma) to remove the contribution of source pixels

	calculate the median of all pixels within the box and use that as the background

	run a linear interpolation between the grid points to make a background image

	calculate a background subtracted image (data-background)

	repeat steps 1-4 on the background subtracted image, but instead of calculating the median, use the std.

Usage

The usage of BANE is described in the help text as follows:

usage: BANE [-h] [--out OUT_BASE] [--grid STEP_SIZE STEP_SIZE]
 [--box BOX_SIZE BOX_SIZE] [--cores CORES] [--stripes STRIPES]
 [--nomask] [--noclobber] [--debug] [--compress] [--cite]
 [image]

positional arguments:
 image

optional arguments:
 -h, --help show this help message and exit

Configuration Options:
 --out OUT_BASE Basename for output images default:
 FileName_{bkg,rms}.fits
 --grid STEP_SIZE STEP_SIZE
 The [x,y] size of the grid to use. Default = ~4* beam
 size square.
 --box BOX_SIZE BOX_SIZE
 The [x,y] size of the box over which the rms/bkg is
 calculated. Default = 5*grid.
 --cores CORES Number of cores to use. Default = all available.
 --stripes STRIPES Number of slices.
 --nomask Don't mask the output array [default = mask]
 --noclobber Don't run if output files already exist. Default is to
 run+overwrite.
 --debug debug mode, default=False
 --compress Produce a compressed output file.
 --cite Show citation information.

Description of options

	--compress: This option causes the output files to be very small. This compression is done by writing a fits image without any interpolation. Files that are produced in this way have extra keys in their fits header, which are recognized by Aegean. When compressed files are loaded by aegean they are interpolated (expanded) to their normal sizes.

	--nomask: By default BANE will mask the output image to have the same masked pixels as the input image. This means that nan/blank pixels in the input image will be nan in the output image. This doesn’t happen if --compress is selected.

	--stripes: BANE will break the image into this many sections and process each in turn. By default this is equal to the number of cores, so that all stripes will be processed at the same time. By setting stripes>cores it is possible to reduce the instantaneous memory usage of BANE at the cost of run time.

MIMAS

Motivation

Prior to 1.8.1, the Aegean source-finding program operated on the entire input image. To return a list of sources that were contained within a sub region other programs were required (For example stilts). Normally this is not a big concern as the filtering process is rather fast. Since radio telescopes have circular primary beam patterns, and fits images are forced to be rectangular, the images produced by imaging pipelines would contain the area of interest along with some amount of extra sky. If the pixels outside the area of interest are not flagged or masked by the imaging pipeline then extra tools are required. Not being able to find any nifty tools to do this job for me, I decided to create the Milti-resolution Image Mask for Aegean Software - MIMAS. There are three main features that I was looking for, each of which are solved by MIMAS.

Aims

MIMAS was created with the following three goals in mind:

	to be able to create and manipulate arbitrary shaped regions that could be used to describe areas of sky. The method of manipulation is intended to parallel that of set operations so that you can easily take the intersection, union, or difference of regions, in order to create regions as simple as circles and polygons, to some horrendous thing that describes the sky coverage of a survey.

	to be able to store these regions in a file format that can be easily stored and transmitted.

	to be able to use these regions to mask image files, or to restrict the operation of Aegean to a sub section of a given image.

Methodology

MIMAS is a wrapper script that uses the regions module that is now part of AegeanTools. The regions module contains a suite of unit tests and a single class called Region. The Region class is built on top of the HealPy [https://github.com/healpy/healpy] module, which is in turn a wrapper around the HEALPix [http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2005ApJ...622..759G&db_key=AST&high=41069202cf02947] software.

Usage

MIMAS has five modes of operation:

	create a new region from a combination of: stored regions, circles, or polygons.

	create a new region from a DS9 [http://ds9.si.edu/site/Home.html] .reg file

	convert a region.mim file into a .reg format that can be used as an overlay for DS9.

	use a .fits image to create a .mim region file as if the image were a mask

	use a region file and a .fits image to create a new fits image where pixels that are OUTSIDE the given region have been masked.

The operation of MIMAS is explained by the following help text:

usage: MIMAS [-h] [-o OUTFILE] [-depth N] [+r [filename [filename ...]]]
 [-r [filename [filename ...]]] [+c ra dec radius]
 [-c ra dec radius] [+p [ra [dec ...]]] [-p [ra [dec ...]]] [-g]
 [--mim2reg region.mim region.reg]
 [--reg2mim region.reg region.mim]
 [--mim2fits region.mim region_MOC.fits]
 [--mask2mim mask.fits region.mim] [--intersect region.mim]
 [--area region.mim] [--maskcat region.mim INCAT OUTCAT]
 [--maskimage region.mim file.fits masked.fits]
 [--fitsmask mask.fits file.fits masked_file.fits] [--negate]
 [--colnames RA_name DEC_name] [--threshold THRESHOLD]
 [--fitsimage] [--debug] [--version] [--cite]

optional arguments:
 -h, --help show this help message and exit

Creating/modifying regions:
 Must specify -o, plus or more [+-][cr]

 -o OUTFILE output filename
 -depth N maximum nside=2**N to be used to represent this
 region. [Default=8]
 +r [filename [filename ...]]
 add a region specified by the given file (.mim format)
 -r [filename [filename ...]]
 exclude a region specified by the given file (.mim
 format)
 +c ra dec radius add a circle to this region (decimal degrees)
 -c ra dec radius exclude the given circles from a region
 +p [ra [dec ...]] add a polygon to this region (decimal degrees)
 -p [ra [dec ...]] remove a polygon from this region (decimal degrees)
 -g Interpret input coordinates are galactic instead of
 equatorial.

Using already created regions:
 --mim2reg region.mim region.reg
 convert region.mim into region.reg
 --reg2mim region.reg region.mim
 Convert a .reg file into a .mim file
 --mim2fits region.mim region_MOC.fits
 Convert a .mim file into a MOC.fits file
 --mask2mim mask.fits region.mim
 Convert a masked image into a region file
 --intersect region.mim, +i region.mim
 Write out the intersection of the given regions.
 --area region.mim Report the area of a given region

Masking files with regions:
 --maskcat region.mim INCAT OUTCAT
 use region.mim as a mask on INCAT, writing OUTCAT
 --maskimage region.mim file.fits masked.fits
 use region.mim to mask the image file.fits and write
 masked.fits
 --fitsmask mask.fits file.fits masked_file.fits
 Use a fits file as a mask for another fits file.
 Values of blank/nan/zero are considered to be
 mask=True.
 --negate By default all masks will exclude data that are within
 the given region. Use --negate to exclude data that is
 outside of the region instead.
 --colnames RA_name DEC_name
 The name of the columns which contain the RA/DEC data.
 Default=(ra,dec).

Extra options:
 --threshold THRESHOLD
 Threshold value for input mask file.
 --fitsimage Save the region as a fits image
 --debug debug mode [default=False]
 --version show program's version number and exit
 --cite Show citation information.

Regions are added/subtracted in the following order, +r -r +c -c +p -p. This
means that you might have to take multiple passes to construct overly
complicated regions.

Data model and operation

At the most basic level, The Regions class takes a description of a sky area, either a circle or a polygon, and converts it into a list of HELAPix pixels. These pixels are stored as a python set, making it easy to implement set operations on these regions. HEALpix is a parameterization of the sky that maps diamond shaped regions of equal area, onto a pixel number. There are many interesting properties of the nested HEALPix parameterization that make it easy to implement the Region class. Firstly, HEALPix can represent areas of sky that are as coarse as 1/12th of the entire sky, to regions that are 1/2^30 times smaller. A depth or resolution parameter of 2^12 represents a pixel size of less than one arcminute. By making use of different resolutions of pixels, it is possible to represent any region in an efficient manner. The sky area that is represented by a Region is a combination of pixels of different resolutions, with the smallest resolution being supplied by the user.

File format

The MIMAS program is able to take a description of a region and save it to a file for use by many programs. Since he underlying data model is a dictionary of sets, the fastest and easiest file format to use is that given by the cPickle module (a binary file). These files are small, fast to read and write, and accurately reproduce the region object that was stored. The MIMAS program writes files with an extension of .mim.

Interaction with Aegean

Region files with .mim extension that are created by MIMAS can be used to restrict Aegean to the given region of an image. Use the --region region.mim option when running Aegean to enable this.

SR6

BANE is able to output compressed background and rms images using the --compress option. If you have a compressed file and want to expand it to have the same number of pixels as your original image then you need to use SR6.

If you have an image that you, for some reason, want to compress using a super-lossy algorithm known as decimation, then SR6 is what you want.

Usage is:

usage: SR6.py [-h] [-o OutputFile] [-f factor] [-x]
 [-i {linear,nearest,cubic}] [-m MaskFile] [--debug] [--version]
 infile

optional arguments:
 -h, --help show this help message and exit

Shrinking and expanding files:
 infile input filename
 -o OutputFile output filename
 -f factor reduction factor
 -x Operation is expand instead of compress.
 -i {linear,nearest,cubic}
 Interpolation method
 -m MaskFile File to use for masking pixels.
 --debug Debug output
 --version show program's version number and exit

In order to be able to expand a file, the file needs to have some special keywords in the fits header. These are inserted automatically by BANE, but you could probably fidget them for yourself if you had the need.

You should be able to shrink any file that you choose.

 d# aegean

Simple usage

Suggested basic usage (with mostly default parameters):

aegean RadioImage.fits --table=Catalog.fits

Usage and short description can be obtained via aegean, which is replicated below.

This is Aegean 2.2.2-(2020-06-07)
usage: aegean [-h] [--find] [--cores CORES] [--hdu HDU_INDEX]
 [--beam BEAM BEAM BEAM] [--telescope TELESCOPE] [--lat LAT]
 [--slice SLICE] [--forcerms RMS] [--forcebkg BKG]
 [--noise NOISEIMG] [--background BACKGROUNDIMG] [--psf IMGPSF]
 [--autoload] [--out OUTFILE] [--table TABLES] [--tformats]
 [--blankout] [--colprefix COLUMN_PREFIX]
 [--maxsummits MAX_SUMMITS] [--seedclip INNERCLIP]
 [--floodclip OUTERCLIP] [--island] [--nopositive] [--negative]
 [--region REGION] [--nocov] [--condon] [--priorized PRIORIZED]
 [--ratio RATIO] [--noregroup] [--input INPUT] [--catpsf CATPSF]
 [--save] [--outbase OUTBASE] [--debug] [--versions] [--cite]
 [image]

positional arguments:
 image

optional arguments:
 -h, --help show this help message and exit

Configuration Options:
 --find Source finding mode. [default: true, unless --save or
 --measure are selected]
 --cores CORES Number of CPU cores to use for processing [default:
 all cores]
 --hdu HDU_INDEX HDU index (0-based) for cubes with multiple images in
 extensions. [default: 0]
 --beam BEAM BEAM BEAM
 The beam parameters to be used is "--beam major minor
 pa" all in degrees. [default: read from fits header].
 --telescope TELESCOPE
 DEPRECATED
 --lat LAT DEPRECATED
 --slice SLICE If the input data is a cube, then this slice will
 determine the array index of the image which will be
 processed by aegean

Input Options: [29/99695]
 --forcerms RMS Assume a single image noise of rms. [default: None]
 --forcebkg BKG Assume a single image background of bkg. [default:
 None]
 --noise NOISEIMG A .fits file that represents the image noise (rms),
 created from Aegean with --save or BANE. [default:
 none]
 --background BACKGROUNDIMG
 A .fits file that represents the background level,
 created from Aegean with --save or BANE. [default:
 none]
 --psf IMGPSF A .fits file that represents the local PSF.
 --autoload Automatically look for background, noise, region, and
 psf files using the input filename as a hint.
 [default: don't do this]

Output Options:
 --out OUTFILE Destination of Aegean catalog output. [default: No
 output]
 --table TABLES Additional table outputs, format inferred from
 extension. [default: none]
 --tformats Show a list of table formats supported in this
 install, and their extensions
 --blankout Create a blanked output image. [Only works if
 cores=1].
 --colprefix COLUMN_PREFIX
 Prepend each column name with "prefix_". Default =
 prepend nothing

Source finding/fitting configuration options:
 --maxsummits MAX_SUMMITS
 If more than *maxsummits* summits are detected in an
 island, no fitting is done, only estimation. [default:
 no limit]
 --seedclip INNERCLIP The clipping value (in sigmas) for seeding islands.
 [default: 5]
 --floodclip OUTERCLIP
 The clipping value (in sigmas) for growing islands.
 [default: 4]
 --island Also calculate the island flux in addition to the
 individual components. [default: false]
 --nopositive Don't report sources with positive fluxes. [default:
 false]
 --negative Report sources with negative fluxes. [default: false]
 --region REGION Use this regions file to restrict source finding in
 this image. Use MIMAS region (.mim) files.
 --nocov Don't use the covariance of the data in the fitting
 procces. [Default = False]
 --condon replace errors with those suggested by Condon'97.
 [Default = False]

Priorized Fitting config options:
 in addition to the above source fitting options

 --priorized PRIORIZED
 Enable priorized fitting level n=[1,2,3]. 1=fit flux,
 2=fit flux/position, 3=fit flux/position/shape. See
 the GitHub wiki for more details.
 --ratio RATIO The ratio of synthesized beam sizes (image psf / input
 catalog psf). For use with priorized.
 --noregroup Do not regroup islands before priorized fitting.
 --input INPUT If --priorized is used, this gives the filename for a
 catalog of locations at which fluxes will be measured.
 --catpsf CATPSF A psf map corresponding to the input catalog. This
 will allow for the correct resizing of sources when
 the catalog and image psfs differ.

Extra options:
 --save Enable the saving of the background and noise images.
 Sets --find to false. [default: false]
 --outbase OUTBASE If --save is True, then this specifies the base name
 of the background and noise images. [default: inferred
 from input image]
 --debug Enable debug mode. [default: false]
 --versions Show the file versions of relevant modules. [default:
 false]
 --cite Show citation information.

Example usage:

The following commands can be run from the Aegean directory right out of the box, since they use the test images that are included with Aegean.

	Blind source finding on a test image and report results to stdout

	aegean tests/test_files/1904-66_SIN.fits

	As above but put the results into a text file

	aegean tests/test_files1904-66_SIN.fits --table out.csv

	The above creates a file out_comp.csv for the components that were fit

	Do source finding using a catalog input as the initial parameters for the sources

	aegean --priorized 1 --input out_comp.csv tests/test_files/1904-66_SIN.fits

	Source-find an image and save results to multiple tables

	aegean --table catalog.csv,catalog.vot,catalog.fits tests/test_files1904-66_SIN.fits

	Source-find an image and report the components and islands that were found

	aegean --table catalog.vot --island tests/test_files1904-66_SIN.fits

	The above creates two files: catalog_comp.vot for the components, and catalog_isle.vot for the islands. The island column of the components maps to the island column of the islands.

	Source-find a sub-region of an image

	aegean --region=region.mim tests/test_files1904-66_SIN.fits

	The region.mim is a region file in the format created by MIMAS

Output formats

Aegean supports a number of output formats. There is the Aegean default, which is a set of columns separated by spaces, with header lines starting with #. The format is described within the output file itself.

The Aegean default output (which goes to STDOUT) does not contain all of the columns listed below.
Tables created with the --table option contain all the following columns, and as much meta-data as I can manage to pack in.

Table description

Columns included in output tables have the following columns:

	island - numerical indication of the island from which the source was fitted

	source - source number within that island

	background - background flux density in Jy/beam

	local_rms - local rms in Jy/beam

	ra_str - RA J2000 sexigessimal format

	dec_str - dec J2000 sexigessimal format

	ra - RA in degrees

	err_ra - source-finding fitting error on RA in degrees

	dec - dec in degrees

	err_dec - source-finding fitting error on dec in degrees

	peak_flux - peak flux density in Jy/beam

	err_peak_flux - source-finding fitting error on peak flux density in Jy/beam

	int_flux - integrated flux density in Jy. This is calculated from a/b/peak_flux and the synthesized beam size. It is not fit directly.

	err_int_flux - source-finding fitting error on integrated flux density in Jy

	a - fitted semi-major axis in arcsec

	err_a - error on fitted semi-major axis in arcsec

	b - fitted semi-minor axis in arcsec

	err_b- error on fitted semi-minor axis in arcsec

	pa - fitted position angle in degrees

	err_pa - error on fitted position angle in degrees

	flags - fitting flags (should be all 0 for a good fit)

	residual_mean - mean of the residual flux remaining in the island after fitted Gaussian is subtracted

	residual_std - standard deviation of the residual flux remaining in the island after fitted Gaussian is subtracted

	uuid - a universally unique identifier for this component.

	psf_a - the semi-major axis of the point spread function at this location (arcsec)

	psf_b - the semi-minor axis of the point spread function at this location (arcsec)

	psf_pa - the position angle of the point spread function at this location (arcsec)

An island source will have the following columns:

	island - numerical indication of the island

	components - the number of components within this island

	background - background flux density in Jy/beam

	local_rms - local rms in Jy/beam

	ra_str - RA J2000 sexigessimal format

	dec_str - dec J2000 sexigessimal format

	ra - RA in degrees, of the brightest pixel in the island

	dec - dec in degrees, of the brightest pixel in the island

	peak_flux - peak flux density in Jy/beam, of the brightest pixel in the island

	int_flux - integrated flux density in Jy. Computed by summing pixels in the island, and dividing by the synthesized beam size.

	err_int_flux - Error in the above. Currently Null/None since I don’t know how to calculate it.

	eta - a correction factor for int_flux that is meant to account for the flux that was not included because it was below the clipping limit. For a point source the true flux should be int_flux/eta. For extended sources this isn’t always the case so use with caution.

	x_width - the extent of the island in the first pixel dimension, in pixels

	y_width - the extent of the island in the second pixel dimension, in pixels

	max_angular_size - the largest distance between to points on the boundary of the island, in degrees.

	pa - the position angle of the max_angular_size line

	pixels - the number of pixels within the island

	beam_area - the area of the synthesized beam (psf) in deg^2

	area - the area of the island in deg^2

	flags - fitting flags (should be all 0 for a good fit)

	uuid - a universally unique identifier for this island.

Note: Column names with ‘ra/dec’ will be replaced with a ‘lat/lon’ version if the input image has galactic coordinates in the WCS.

Table Types

The most useful output is to use tables. Table output is supported by sqlite and astropy [https://astropy.org] and there are three main types: database, votable, and ascii table. Additionally you can output ds9 region files by specifying a .reg file extension.

Database:

This format requires that the sqlite module is available. This is nearly always true by default, but if you get a crash then check that you can import sqlite3 from a python terminal before submitting a bug report.

Use --table out.db to create a database file containing one table for each source type that was discovered. The table names are ‘components’, ‘islands’, and ‘simples’. Islands are created when –island is enabled. Components are elliptical gaussian fits and are the default type of source to create. Simples are sources that have been created by using the –measure option.

The columns of the database are self explanatory though they have no units. All fluxes are in Jy, major and minor axes are in arcseconds, and the position angle is in degrees. Errors that would normally be reported as -1 in other formats are stored as nulls in the database tables.

VOTable:

VOTables are difficult to work with as a human, but super awesome to work with when you have TopCat [http://www.star.bris.ac.uk/~mbt/topcat/] or some other VO enabled software.

VOTable output is supported by AstroPy (0.3+ I think). If you don’t have the right version of AstroPy you can still run Aegean but will not be able to write VOTables. You will be told this when Aegean runs.

Use --table out.vot or --table out.xml to create a VOTable. Each type of sources that you find will be saved to a different file. Components are saved to out_comp.vot, islands are saved to out_isle.vot, and simple sources will be saved to out_simp.vot (or xml as appropriate). See above for a description of the source types.

ASCII tables:

ASCII tables are supported by AstroPy (0.4+ I think). As with VOTables, if you don’t have the right version of AstroPy then Aegean will still run but it will tell you that you can’t write ASCII tables.

There are currently four types of ascii tables that can be used:

	csv -> comma separated values

	tab -> tab separated values

	tex -> LaTeX formatted table

	html -> an html formatted table

Use --table out.html,out.tex etc.. for the type of table you are interested in. All tables have column headers that are the same as the variable names. These should be easily discernible. The units are Jy for fluxes, arcseconds for major/minor axes, and degrees for position angles.

As with other table formats the file names will be modified to out_comp.html, out_simp.csv, etc… to denote the different types of sources that are contained within.

FITS binary tables

use extension fits or FITS (but not fit or FIT) to write output tables.
Functionality supported by AstroPy.
These are binary tables and only the header is human readable.

DS9 region files

Use extension reg for the output table to get DS9 region files.
Both components and islands are supported in this format with _comp.reg and _isle.reg being the corresponding filenames.

Component sources in the _comp.reg files will be shown as ellipses at the location of each component, with the fitted size/orientation. Each ellipse will be annotated with the island and component number such that Island 10, component 0 will appear as (10,0).

Island sources will appear as an outline of the pixels that comprise the island. Each island also has an annotation of the island number, and a diagonal line that represents the largest angular scale.

Flags

There are six different flags that can be set by Aegean during the source finding and fitting process.
In the STDOUT version of the Aegean catalog the flags column is written in binary format with a header that read ZWNCPES. These six flags correspond to:

	Abbreviation

	Name

	Numerical value

	description

	S

	FITERRSMAL

	1

	This flag is set when islands are not able to be fit due to there being fewer pixels than free parameters.

	E

	FITERR

	2

	This flag is set when an error occurs during the fitting process. eg the fit doesn’t converge.

	P

	FIXED2PSF

	4

	If a component is forced to have the shape of the local point spread function then this flag is set. This flag is often set at the same time as the FITERRSMALL, or FIXEDCRICULAR

	C

	FIXEDCRICULAR

	8

	If a source is forced to have a circular shape then this flag will be fit.

	N

	NOTFIT

	16

	If a component is not fit then this flag is set. This can because and island has reached the --maxsummits limit, or --measure mode has been invoked.

	W

	WCSERR

	32

	If the conversion from pixel to sky coordinates doesn’t work then this flag will be set. This can happen for strange projections, but more likely when an image contains pixles that don’t have valid sky coordinates.

	Z

	PRIORIZED

	64

	This flag is set when the source was fit using priorized fitting.

Note that the flags column will be the summation of the numerical value of the above flags. So flags=7 means that flags P, E, and S have been set. This all makes more sense when you print the flags in binary format.

Priorized fitting

This functionality is designed to take an input catalog of sources (previously created by Aegean), and use the source positions and morphologies to measure the flux of these sources within an image.

When --priorized x is invoked the following will happen:

	input catalog is read from the file specified by --input. This file needs to contain all the properties of a source, including island numbers and uuids. The easiest way to make these files is to just take the output from Aegean and modify it as needed.

	The sources within the catalog are regrouped. The regrouping will recreate islands of sources based on their positions and morphologies. Sources will be grouped together if they overlap at the FHWM. Note that this is different from the default island grouping that Aegean does, which is based on pixels within an island. If --noregroup is set then the island grouping will be based on the (isle,source) id’s in the input catalog.

	Fitting will be done on a per island basis, with multiple sources being fit at the same time. The user is able to control which parameters are allowed to vary at this stage by supplying a number x to --priorized x.

	Fitting will be done on all pixels that are greater than the --floodclip limit. If an island has no pixels above this limit then no output source will be generated. Note the special case of --floodclip -1 which will simply use all pixels within some rectangular region around each input source.

	Output will be written to files as specified by --table.

The parameters that are free/fixed in the fitting process depends on the ‘level’ of priorized fitting that is requested. Level:

	Only the flux is allowed to vary. Use this option where you would have otherwise used --measure.

	Flux and positions are allowed to vary, shape is fixed.

	Everything is allowed to vary.

In the case that the psf of the input catalogue and the supplied image are different there are three options for describing this difference:

	Use the --ratio option, which specifies the ratio of major axes (image psf / catalogue psf). This method works well for small images where the psf doesn’t really change over the image, or when the difference is small.

	Supply a psf map for the input catalogue using the --catpsf option. This will give you ultimate fine control over what the psf of your input catalogue is.

	Include the psf parameters in the input catalogue as columns psf_a, psf_b, psf_pa

Note: If you know how to perform the deconvolve-convolve step for two synthesized beams that are not simply scaled versions of each other, then please let me know so that I can implement this.

Notes on input tables:

Any [[format|Output-Formats]] that Aegean can write, is an acceptable input format.
The easiest way to create an input table is to modify and existing catalogue.
The following columns are used for priorized fitting:

	Required:

	ra, dec, peak_flux, a, b, pa

	Optional:

	psf_a, psf_b, psf_pa used for re-scaling the source shapes.

	uuid copied from input to output catalogues

	err_ra, err_dec copied from input to output catalogues when positions are not being fit

	err_a, err_b, err_pa copied from input to output catalogues when shapes are not being fit

Parameters a, b, err_a, err_b, psf_a, and psf_b all have units of arcsec.
Parameters ra, dec, pa,err_ra, err_dec, and err_pa all have units of degrees.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 AegeanTools	

 	
 	
 AegeanTools.angle_tools	

 	
 	
 AegeanTools.BANE	

 	
 	
 AegeanTools.catalogs	

 	
 	
 AegeanTools.cluster	

 	
 	
 AegeanTools.fits_image	

 	
 	
 AegeanTools.fits_interp	

 	
 	
 AegeanTools.fitting	

 	
 	
 AegeanTools.flags	

 	
 	
 AegeanTools.MIMAS	

 	
 	
 AegeanTools.models	

 	
 	
 AegeanTools.msq2	

 	
 	
 AegeanTools.regions	

 	
 	
 AegeanTools.source_finder	

 	
 	
 AegeanTools.wcs_helpers	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add_circles() (AegeanTools.regions.Region method)

 	add_pixels() (AegeanTools.regions.Region method)

 	add_poly() (AegeanTools.regions.Region method)

 	
 AegeanTools.angle_tools

 	module

 	
 AegeanTools.BANE

 	module

 	
 AegeanTools.catalogs

 	module

 	
 AegeanTools.cluster

 	module

 	
 AegeanTools.fits_image

 	module

 	
 AegeanTools.fits_interp

 	module

 	
 AegeanTools.fitting

 	module

 	
 	
 AegeanTools.flags

 	module

 	
 AegeanTools.MIMAS

 	module

 	
 AegeanTools.models

 	module

 	
 AegeanTools.msq2

 	module

 	
 AegeanTools.regions

 	module

 	
 AegeanTools.source_finder

 	module

 	
 AegeanTools.wcs_helpers

 	module

 	as_list() (AegeanTools.models.SimpleSource method)

B

 	
 	barrier() (in module AegeanTools.BANE)

 	Beam (class in AegeanTools.wcs_helpers)

 	bear() (in module AegeanTools.angle_tools)

 	
 	bear_rhumb() (in module AegeanTools.angle_tools)

 	bias_correct() (in module AegeanTools.fitting)

 	Bmatrix() (in module AegeanTools.fitting)

 	box2poly() (in module AegeanTools.MIMAS)

C

 	
 	calc_bounding_box() (AegeanTools.models.PixelIsland method)

 	characterise_islands() (in module AegeanTools.source_finder)

 	check_attributes_for_regroup() (in module AegeanTools.cluster)

 	check_cores() (in module AegeanTools.source_finder)

 	check_table_formats() (in module AegeanTools.catalogs)

 	circle2circle() (in module AegeanTools.MIMAS)

 	
 	classify_catalog() (in module AegeanTools.models)

 	Cmatrix() (in module AegeanTools.fitting)

 	combine_regions() (in module AegeanTools.MIMAS)

 	ComponentSource (class in AegeanTools.models)

 	compress() (in module AegeanTools.fits_interp)

 	condon_errors() (in module AegeanTools.fitting)

 	covar_errors() (in module AegeanTools.fitting)

D

 	
 	dec2dec() (in module AegeanTools.angle_tools)

 	dec2dms() (in module AegeanTools.angle_tools)

 	dec2hms() (in module AegeanTools.angle_tools)

 	dist_rhumb() (in module AegeanTools.angle_tools)

 	
 	do_lmfit() (in module AegeanTools.fitting)

 	do_march() (AegeanTools.msq2.MarchingSquares method)

 	do_march_all() (AegeanTools.msq2.MarchingSquares method)

 	Dummy (class in AegeanTools.MIMAS)

 	DummyLM (class in AegeanTools.models)

E

 	
 	elliptical_gaussian() (in module AegeanTools.fitting)

 	elliptical_gaussian_with_alpha() (in module AegeanTools.fitting)

 	emp_hessian() (in module AegeanTools.fitting)

 	emp_jacobian() (in module AegeanTools.fitting)

 	
 	errors() (in module AegeanTools.fitting)

 	estimate_lmfit_parinfo() (AegeanTools.source_finder.SourceFinder method)

 	estimate_parinfo_image() (in module AegeanTools.source_finder)

 	expand() (in module AegeanTools.fits_interp)

F

 	
 	filter_image() (in module AegeanTools.BANE)

 	filter_mc_sharemem() (in module AegeanTools.BANE)

 	find_islands() (in module AegeanTools.source_finder)

 	find_sources_in_image() (AegeanTools.source_finder.SourceFinder method)

 	find_start_point() (AegeanTools.msq2.MarchingSquares method)

 	
 	fit_islands_parinfo() (in module AegeanTools.source_finder)

 	FitsImage (class in AegeanTools.fits_image)

 	fix_aips_header() (in module AegeanTools.wcs_helpers)

 	fix_shape() (in module AegeanTools.source_finder)

 	from_file() (AegeanTools.wcs_helpers.WCSHelper class method)

 	from_header() (AegeanTools.wcs_helpers.WCSHelper class method)

G

 	
 	galactic2fk5() (in module AegeanTools.MIMAS)

 	gcd() (in module AegeanTools.angle_tools)

 	get_area() (AegeanTools.regions.Region method)

 	get_aux_files() (in module AegeanTools.source_finder)

 	get_background_rms() (AegeanTools.fits_image.FitsImage method)

 	get_beam() (in module AegeanTools.wcs_helpers)

 	get_beamarea_deg2() (AegeanTools.wcs_helpers.WCSHelper method)

 	get_beamarea_pix() (AegeanTools.wcs_helpers.WCSHelper method)

 	get_demoted() (AegeanTools.regions.Region method)

 	
 	get_hdu_header() (AegeanTools.fits_image.FitsImage method)

 	get_pixels() (AegeanTools.fits_image.FitsImage method)

 	get_pixinfo() (in module AegeanTools.wcs_helpers)

 	get_psf_pix2pix() (AegeanTools.wcs_helpers.WCSHelper method)

 	get_psf_sky2pix() (AegeanTools.wcs_helpers.WCSHelper method)

 	get_psf_sky2sky() (AegeanTools.wcs_helpers.WCSHelper method)

 	get_skybeam() (AegeanTools.wcs_helpers.WCSHelper method)

 	get_step_size() (in module AegeanTools.BANE)

 	get_table_formats() (in module AegeanTools.catalogs)

 	GlobalFittingData (class in AegeanTools.models)

H

 	
 	hessian() (in module AegeanTools.fitting)

I

 	
 	intersect() (AegeanTools.regions.Region method)

 	intersect_regions() (in module AegeanTools.MIMAS)

 	
 	island_itergen() (in module AegeanTools.models)

 	IslandFittingData (class in AegeanTools.models)

 	IslandSource (class in AegeanTools.models)

J

 	
 	jacobian() (in module AegeanTools.fitting)

L

 	
 	lmfit_jacobian() (in module AegeanTools.fitting)

 	load() (AegeanTools.regions.Region class method)

 	load_catalog() (in module AegeanTools.catalogs)

 	
 	load_file_or_hdu() (in module AegeanTools.fits_interp)

 	load_globals() (AegeanTools.source_finder.SourceFinder method)

 	load_table() (in module AegeanTools.catalogs)

M

 	
 	make_ita() (in module AegeanTools.fitting)

 	MarchingSquares (class in AegeanTools.msq2)

 	mask2mim() (in module AegeanTools.MIMAS)

 	mask_catalog() (in module AegeanTools.MIMAS)

 	mask_file() (in module AegeanTools.MIMAS)

 	mask_plane() (in module AegeanTools.MIMAS)

 	mask_table() (in module AegeanTools.MIMAS)

 	mim2fits() (in module AegeanTools.MIMAS)

 	mim2reg() (in module AegeanTools.MIMAS)

 	
 module

 	AegeanTools.angle_tools

 	AegeanTools.BANE

 	AegeanTools.catalogs

 	AegeanTools.cluster

 	AegeanTools.fits_image

 	AegeanTools.fits_interp

 	AegeanTools.fitting

 	AegeanTools.flags

 	AegeanTools.MIMAS

 	AegeanTools.models

 	AegeanTools.msq2

 	AegeanTools.regions

 	AegeanTools.source_finder

 	AegeanTools.wcs_helpers

N

 	
 	nan_acf() (in module AegeanTools.fitting)

 	new_errors() (in module AegeanTools.fitting)

 	
 	norm_dist() (in module AegeanTools.cluster)

 	ntwodgaussian_lmfit() (in module AegeanTools.fitting)

 	nulls() (in module AegeanTools.catalogs)

P

 	
 	pa_limit() (in module AegeanTools.source_finder)

 	pairwise_ellpitical_binary() (in module AegeanTools.cluster)

 	pix2sky() (AegeanTools.fits_image.FitsImage method)

 	(AegeanTools.wcs_helpers.WCSHelper method)

 	pix2sky_ellipse() (AegeanTools.wcs_helpers.WCSHelper method)

 	
 	pix2sky_vec() (AegeanTools.wcs_helpers.WCSHelper method)

 	PixelIsland (class in AegeanTools.models)

 	poly2poly() (in module AegeanTools.MIMAS)

 	priorized_fit_islands() (AegeanTools.source_finder.SourceFinder method)

 	priorized_islands_parinfo() (in module AegeanTools.source_finder)

 	psf_sky2pix() (AegeanTools.wcs_helpers.WCSHelper method)

R

 	
 	ra2dec() (in module AegeanTools.angle_tools)

 	radec2sky() (AegeanTools.regions.Region static method)

 	RB_bias() (in module AegeanTools.fitting)

 	reg2mim() (in module AegeanTools.MIMAS)

 	Region (class in AegeanTools.regions)

 	
 	regroup() (in module AegeanTools.cluster)

 	regroup_dbscan() (in module AegeanTools.cluster)

 	regroup_vectorized() (in module AegeanTools.cluster)

 	resize() (in module AegeanTools.cluster)

 	result_to_components() (AegeanTools.source_finder.SourceFinder method)

S

 	
 	save() (AegeanTools.regions.Region method)

 	save_as_image() (in module AegeanTools.MIMAS)

 	save_background_files() (AegeanTools.source_finder.SourceFinder method)

 	save_catalog() (in module AegeanTools.catalogs)

 	save_catalogue() (in module AegeanTools.source_finder)

 	save_image() (AegeanTools.source_finder.SourceFinder method)

 	save_region() (in module AegeanTools.MIMAS)

 	set_mask() (AegeanTools.models.PixelIsland method)

 	set_pixels() (AegeanTools.fits_image.FitsImage method)

 	show_formats() (in module AegeanTools.catalogs)

 	sigma_filter() (in module AegeanTools.BANE)

 	sigmaclip() (in module AegeanTools.BANE)

 	SimpleSource (class in AegeanTools.models)

 	
 	sky2ang() (AegeanTools.regions.Region static method)

 	sky2pix() (AegeanTools.fits_image.FitsImage method)

 	(AegeanTools.wcs_helpers.WCSHelper method)

 	sky2pix_ellipse() (AegeanTools.wcs_helpers.WCSHelper method)

 	sky2pix_vec() (AegeanTools.wcs_helpers.WCSHelper method)

 	sky2vec() (AegeanTools.regions.Region class method)

 	sky_dist() (in module AegeanTools.cluster)

 	sky_sep() (AegeanTools.wcs_helpers.WCSHelper method)

 	sky_within() (AegeanTools.regions.Region method)

 	solid() (AegeanTools.msq2.MarchingSquares method)

 	SourceFinder (class in AegeanTools.source_finder)

 	step() (AegeanTools.msq2.MarchingSquares method)

 	symmetric_difference() (AegeanTools.regions.Region method)

T

 	
 	table_to_source_list() (in module AegeanTools.catalogs)

 	theta_limit() (in module AegeanTools.source_finder)

 	
 	translate() (in module AegeanTools.angle_tools)

 	translate_rhumb() (in module AegeanTools.angle_tools)

U

 	
 	union() (AegeanTools.regions.Region method)

 	
 	update_meta_data() (in module AegeanTools.catalogs)

V

 	
 	vec2sky() (AegeanTools.regions.Region class method)

W

 	
 	walk_perimeter() (AegeanTools.msq2.MarchingSquares method)

 	WCSHelper (class in AegeanTools.wcs_helpers)

 	without() (AegeanTools.regions.Region method)

 	write_catalog() (in module AegeanTools.catalogs)

 	write_fits() (AegeanTools.regions.Region method)

 	(in module AegeanTools.BANE)

 	
 	write_reg() (AegeanTools.regions.Region method)

 	write_table() (in module AegeanTools.catalogs)

 	writeAnn() (in module AegeanTools.catalogs)

 	writeDB() (in module AegeanTools.catalogs)

 	writeFITSTable() (in module AegeanTools.catalogs)

 	writeIslandBoxes() (in module AegeanTools.catalogs)

 	writeIslandContours() (in module AegeanTools.catalogs)

 nav.xhtml

 Table of Contents

 		
 Welcome to the AegeanTools documentation!

 		
 AegeanTools modules

 		
 angle_tools

 		
 BANE

 		
 catalogs

 		
 cluster

 		
 fits_image

 		
 fits_interp

 		
 fitting

 		
 flags

 		
 MIMAS

 		
 models

 		
 msq2

 		
 regions

 		
 source_finder

 		
 wcs_helpers

 		
 AegeanTools scripts

 		
 AeReg

 		
 AeRes

 		
 BANE

 		
 Motivation

 		
 Aim

 		
 Methodology

 		
 Processing steps

 		
 Usage

 		
 Description of options

 		
 MIMAS

 		
 Motivation

 		
 Aims

 		
 Methodology

 		
 Usage

 		
 Data model and operation

 		
 File format

 		
 Interaction with Aegean

 		
 SR6

 		
 Simple usage

 		
 Example usage:

 		
 Output formats

 		
 Table description

 		
 Table Types

 		
 Database:

 		
 VOTable:

 		
 ASCII tables:

 		
 FITS binary tables

 		
 DS9 region files

 		
 Flags

 		
 Priorized fitting

 		
 Notes on input tables:

_static/file.png

_static/minus.png

_static/plus.png

